
WD150G www.globalknowledge.com.eg training@globalknowledge.com.eg 00 20 (0) 2 2269 1982 or 16142

Introduction to Object-Oriented Programming with Java Examples

Duration: 3 Days Course Code: WD150G

Overview:

In this 3-day instructor-led course, students learn how to adopt an object-oriented (OO) approach to software development. The course is
designed for experienced developers coming to Java from non object-oriented languages such as COBOL, RPG, or C. It is also appropriate for
those who are new to programming.
Through a combination of instructor-led lectures and hands-on exercises, students take a case study through the stages of object-oriented
requirements gathering, analysis, and design using the Unified Modeling Language (UML). Students learn how the Java language supports
object-oriented programming, and how object-oriented designs can be implemented in Java. Numerous hands-on exercises and
demonstrations provide practical experience with OO development from analysis and design to implementation.
This course includes topics such as interpreting UML diagrams, recognizing Java constructs that enable object-orientation, and how design
patterns can improve the implementation of applications. The course also provides an overview of different software development
methodologies that can be applied to the development of object-oriented applications.
This course prepares students for further training in the Java programming language by providing a sound foundation in OO principles.

Target Audience:

This basic course is designed for architects, designers, analysts, developers, testers, administrators, managers, and project managers who will
use object-oriented technology to build applications.

Objectives:

State the advantages of an object-oriented approach to software Describe the impact of designing an application that can
development accommodate changes and the approaches to support such designs

Describe essential object-oriented concepts and terminology Create Java classes that implement an object-oriented design

Perform OO requirements gathering, analysis, and design Apply Java language constructs that enable and enforce OO-related
concepts such as data encapsulation, strict typing and type
conversion, inheritance, and polymorphism

Describe the role of Unified Modeling Language (UML) in
object-oriented analysis and design

Explain how design patterns can improve the implementation of OO
designs

Read the most commonly used types of UML diagrams

Describe the incremental and iterative process for developing
applications using object technology and how it differs from

Create UML use case, class, and sequence diagrams traditional approaches (for example, waterfall) to application
development

Compare the Rational Unified Process (RUP) and Agile approach as
software development methodologies

Prerequisites:

There are no prerequisites for this course.

WD150G www.globalknowledge.com.eg training@globalknowledge.com.eg 00 20 (0) 2 2269 1982 or 16142

WD150G www.globalknowledge.com.eg training@globalknowledge.com.eg 00 20 (0) 2 2269 1982 or 16142

Content:

line line line
Exercise: Identifying candidate objects in a Exercise: Identifying candidate objects in Exercise: Identifying candidate objects in a
case study a case study case study
Object concepts Object concepts Object concepts
Exercise: Identifying classes and methods in Exercise: Identifying classes and Exercise: Identifying classes and methods
a case study methods in a case study in a case study
Key principles of object-oriented Key principles of object-oriented Key principles of object-oriented
programming programming programming
Exercise: Identifying classes and Exercise: Identifying classes and Exercise: Identifying classes and
associations in a case study associations in a case study associations in a case study
Introduction to UML Introduction to UML Introduction to UML
Development project life cycle Development project life cycle Development project life cycle
Requirements and use cases Requirements and use cases Requirements and use cases
Exercise: Identifying actors and use cases Exercise: Identifying actors and use Exercise: Identifying actors and use cases
Java technology overview cases Java technology overview
Demonstration: Programming Java with the Java technology overview Demonstration: Programming Java with
SDK Demonstration: Programming Java with the SDK
Introduction to the Java language the SDK Introduction to the Java language
Demonstration: Using the software Introduction to the Java language Demonstration: Using the software
development platform Demonstration: Using the software development platform
Exercise: Java programming - Defining development platform Exercise: Java programming - Defining
some classes Exercise: Java programming - Defining some classes
OO analysis - Static UML diagrams some classes OO analysis - Static UML diagrams
Exercise: Finding candidate objects and OO analysis - Static UML diagrams Exercise: Finding candidate objects and
creating a class diagram Exercise: Finding candidate objects and creating a class diagram
OO analysis - Dynamic UML diagrams creating a class diagram OO analysis - Dynamic UML diagrams
Exercise: Developing sequence diagrams OO analysis - Dynamic UML diagrams Exercise: Developing sequence diagrams
OO design for implementation - Exercise: Developing sequence diagrams OO design for implementation -
Associations OO design for implementation - Associations
Exercise: Refining the design for a case Associations Exercise: Refining the design for a case
study (optional) Exercise: Refining the design for a case study (optional)
OO design for implementation - Inheritance study (optional) OO design for implementation -
Exercise: Java programming - Implementing OO design for implementation - Inheritance
a design Inheritance Exercise: Java programming -
Designing for change Exercise: Java programming - Implementing a design
Exercise: Java programming - Improving the Implementing a design Designing for change
implementation Designing for change Exercise: Java programming - Improving
Methodologies Exercise: Java programming - Improving the implementation
Course summary the implementation Methodologies

Methodologies Course summary
Course summary

line
Exercise: Identifying candidate objects in a line
case study line Exercise: Identifying candidate objects in a
Object concepts Exercise: Identifying candidate objects in case study
Exercise: Identifying classes and methods in a case study Object concepts
a case study Object concepts Exercise: Identifying classes and methods
Key principles of object-oriented Exercise: Identifying classes and in a case study
programming methods in a case study Key principles of object-oriented
Exercise: Identifying classes and Key principles of object-oriented programming
associations in a case study programming Exercise: Identifying classes and
Introduction to UML Exercise: Identifying classes and associations in a case study
Development project life cycle associations in a case study Introduction to UML
Requirements and use cases Introduction to UML Development project life cycle
Exercise: Identifying actors and use cases Development project life cycle Requirements and use cases
Java technology overview Requirements and use cases Exercise: Identifying actors and use cases
Demonstration: Programming Java with the Exercise: Identifying actors and use Java technology overview
SDK cases Demonstration: Programming Java with
Introduction to the Java language Java technology overview the SDK
Demonstration: Using the software Demonstration: Programming Java with Introduction to the Java language
development platform the SDK Demonstration: Using the software
Exercise: Java programming - Defining Introduction to the Java language development platform
some classes Demonstration: Using the software Exercise: Java programming - Defining

WD150G www.globalknowledge.com.eg training@globalknowledge.com.eg 00 20 (0) 2 2269 1982 or 16142

OO analysis - Static UML diagrams development platform some classes
Exercise: Finding candidate objects and Exercise: Java programming - Defining OO analysis - Static UML diagrams
creating a class diagram some classes Exercise: Finding candidate objects and
OO analysis - Dynamic UML diagrams OO analysis - Static UML diagrams creating a class diagram
Exercise: Developing sequence diagrams Exercise: Finding candidate objects and OO analysis - Dynamic UML diagrams
OO design for implementation - creating a class diagram Exercise: Developing sequence diagrams
Associations OO analysis - Dynamic UML diagrams OO design for implementation -
Exercise: Refining the design for a case Exercise: Developing sequence diagrams Associations
study (optional) OO design for implementation - Exercise: Refining the design for a case
OO design for implementation - Inheritance Associations study (optional)
Exercise: Java programming - Implementing Exercise: Refining the design for a case OO design for implementation -
a design study (optional) Inheritance
Designing for change OO design for implementation - Exercise: Java programming -
Exercise: Java programming - Improving the Inheritance Implementing a design
implementation Exercise: Java programming - Designing for change
Methodologies Implementing a design Exercise: Java programming - Improving
Course summary Designing for change the implementation

Exercise: Java programming - Improving Methodologies
the implementation Course summary

line Methodologies
Exercise: Identifying candidate objects in a Course summary
case study line
Object concepts Exercise: Identifying candidate objects in a
Exercise: Identifying classes and methods in line case study
a case study Exercise: Identifying candidate objects in Object concepts
Key principles of object-oriented a case study Exercise: Identifying classes and methods
programming Object concepts in a case study
Exercise: Identifying classes and Exercise: Identifying classes and Key principles of object-oriented
associations in a case study methods in a case study programming
Introduction to UML Key principles of object-oriented Exercise: Identifying classes and
Development project life cycle programming associations in a case study
Requirements and use cases Exercise: Identifying classes and Introduction to UML
Exercise: Identifying actors and use cases associations in a case study Development project life cycle
Java technology overview Introduction to UML Requirements and use cases
Demonstration: Programming Java with the Development project life cycle Exercise: Identifying actors and use cases
SDK Requirements and use cases Java technology overview
Introduction to the Java language Exercise: Identifying actors and use Demonstration: Programming Java with
Demonstration: Using the software cases the SDK
development platform Java technology overview Introduction to the Java language
Exercise: Java programming - Defining Demonstration: Programming Java with Demonstration: Using the software
some classes the SDK development platform
OO analysis - Static UML diagrams Introduction to the Java language Exercise: Java programming - Defining
Exercise: Finding candidate objects and Demonstration: Using the software some classes
creating a class diagram development platform OO analysis - Static UML diagrams
OO analysis - Dynamic UML diagrams Exercise: Java programming - Defining Exercise: Finding candidate objects and
Exercise: Developing sequence diagrams some classes creating a class diagram
OO design for implementation - OO analysis - Static UML diagrams OO analysis - Dynamic UML diagrams
Associations Exercise: Finding candidate objects and Exercise: Developing sequence diagrams
Exercise: Refining the design for a case creating a class diagram OO design for implementation -
study (optional) OO analysis - Dynamic UML diagrams Associations
OO design for implementation - Inheritance Exercise: Developing sequence diagrams Exercise: Refining the design for a case
Exercise: Java programming - Implementing OO design for implementation - study (optional)
a design Associations OO design for implementation -
Designing for change Exercise: Refining the design for a case Inheritance
Exercise: Java programming - Improving the study (optional) Exercise: Java programming -
implementation OO design for implementation - Implementing a design
Methodologies Inheritance Designing for change
Course summary Exercise: Java programming - Exercise: Java programming - Improving

Implementing a design the implementation
Designing for change Methodologies

line Exercise: Java programming - Improving Course summary
Exercise: Identifying candidate objects in a the implementation
case study Methodologies
Object concepts Course summary line
Exercise: Identifying classes and methods in Exercise: Identifying candidate objects in a
a case study case study

WD150G www.globalknowledge.com.eg training@globalknowledge.com.eg 00 20 (0) 2 2269 1982 or 16142

Key principles of object-oriented line Object concepts
programming Exercise: Identifying candidate objects in Exercise: Identifying classes and methods
Exercise: Identifying classes and a case study in a case study
associations in a case study Object concepts Key principles of object-oriented
Introduction to UML Exercise: Identifying classes and programming
Development project life cycle methods in a case study Exercise: Identifying classes and
Requirements and use cases Key principles of object-oriented associations in a case study
Exercise: Identifying actors and use cases programming Introduction to UML
Java technology overview Exercise: Identifying classes and Development project life cycle
Demonstration: Programming Java with the associations in a case study Requirements and use cases
SDK Introduction to UML Exercise: Identifying actors and use cases
Introduction to the Java language Development project life cycle Java technology overview
Demonstration: Using the software Requirements and use cases Demonstration: Programming Java with
development platform Exercise: Identifying actors and use the SDK
Exercise: Java programming - Defining cases Introduction to the Java language
some classes Java technology overview Demonstration: Using the software
OO analysis - Static UML diagrams Demonstration: Programming Java with development platform
Exercise: Finding candidate objects and the SDK Exercise: Java programming - Defining
creating a class diagram Introduction to the Java language some classes
OO analysis - Dynamic UML diagrams Demonstration: Using the software OO analysis - Static UML diagrams
Exercise: Developing sequence diagrams development platform Exercise: Finding candidate objects and
OO design for implementation - Exercise: Java programming - Defining creating a class diagram
Associations some classes OO analysis - Dynamic UML diagrams
Exercise: Refining the design for a case OO analysis - Static UML diagrams Exercise: Developing sequence diagrams
study (optional) Exercise: Finding candidate objects and OO design for implementation -
OO design for implementation - Inheritance creating a class diagram Associations
Exercise: Java programming - Implementing OO analysis - Dynamic UML diagrams Exercise: Refining the design for a case
a design Exercise: Developing sequence diagrams study (optional)
Designing for change OO design for implementation - OO design for implementation -
Exercise: Java programming - Improving the Associations Inheritance
implementation Exercise: Refining the design for a case Exercise: Java programming -
Methodologies study (optional) Implementing a design
Course summary OO design for implementation - Designing for change

Inheritance Exercise: Java programming - Improving
Exercise: Java programming - the implementation

line Implementing a design Methodologies
Exercise: Identifying candidate objects in a Designing for change Course summary
case study Exercise: Java programming - Improving
Object concepts the implementation
Exercise: Identifying classes and methods in Methodologies line
a case study Course summary Exercise: Identifying candidate objects in a
Key principles of object-oriented case study
programming Object concepts
Exercise: Identifying classes and line Exercise: Identifying classes and methods
associations in a case study Exercise: Identifying candidate objects in in a case study
Introduction to UML a case study Key principles of object-oriented
Development project life cycle Object concepts programming
Requirements and use cases Exercise: Identifying classes and Exercise: Identifying classes and
Exercise: Identifying actors and use cases methods in a case study associations in a case study
Java technology overview Key principles of object-oriented Introduction to UML
Demonstration: Programming Java with the programming Development project life cycle
SDK Exercise: Identifying classes and Requirements and use cases
Introduction to the Java language associations in a case study Exercise: Identifying actors and use cases
Demonstration: Using the software Introduction to UML Java technology overview
development platform Development project life cycle Demonstration: Programming Java with
Exercise: Java programming - Defining Requirements and use cases the SDK
some classes Exercise: Identifying actors and use Introduction to the Java language
OO analysis - Static UML diagrams cases Demonstration: Using the software
Exercise: Finding candidate objects and Java technology overview development platform
creating a class diagram Demonstration: Programming Java with Exercise: Java programming - Defining
OO analysis - Dynamic UML diagrams the SDK some classes
Exercise: Developing sequence diagrams Introduction to the Java language OO analysis - Static UML diagrams
OO design for implementation - Demonstration: Using the software Exercise: Finding candidate objects and
Associations development platform creating a class diagram
Exercise: Refining the design for a case Exercise: Java programming - Defining OO analysis - Dynamic UML diagrams
study (optional) some classes Exercise: Developing sequence diagrams

WD150G www.globalknowledge.com.eg training@globalknowledge.com.eg 00 20 (0) 2 2269 1982 or 16142

OO design for implementation - Inheritance OO analysis - Static UML diagrams OO design for implementation -
Exercise: Java programming - Implementing Exercise: Finding candidate objects and Associations
a design creating a class diagram Exercise: Refining the design for a case
Designing for change OO analysis - Dynamic UML diagrams study (optional)
Exercise: Java programming - Improving the Exercise: Developing sequence diagrams OO design for implementation -
implementation OO design for implementation - Inheritance
Methodologies Associations Exercise: Java programming -
Course summary Exercise: Refining the design for a case Implementing a design

study (optional) Designing for change
OO design for implementation - Exercise: Java programming - Improving

line Inheritance the implementation
Exercise: Identifying candidate objects in a Exercise: Java programming - Methodologies
case study Implementing a design Course summary
Object concepts Designing for change
Exercise: Identifying classes and methods in Exercise: Java programming - Improving
a case study the implementation line
Key principles of object-oriented Methodologies Exercise: Identifying candidate objects in a
programming Course summary case study
Exercise: Identifying classes and Object concepts
associations in a case study Exercise: Identifying classes and methods
Introduction to UML line in a case study
Development project life cycle Exercise: Identifying candidate objects in Key principles of object-oriented
Requirements and use cases a case study programming
Exercise: Identifying actors and use cases Object concepts Exercise: Identifying classes and
Java technology overview Exercise: Identifying classes and associations in a case study
Demonstration: Programming Java with the methods in a case study Introduction to UML
SDK Key principles of object-oriented Development project life cycle
Introduction to the Java language programming Requirements and use cases
Demonstration: Using the software Exercise: Identifying classes and Exercise: Identifying actors and use cases
development platform associations in a case study Java technology overview
Exercise: Java programming - Defining Introduction to UML Demonstration: Programming Java with
some classes Development project life cycle the SDK
OO analysis - Static UML diagrams Requirements and use cases Introduction to the Java language
Exercise: Finding candidate objects and Exercise: Identifying actors and use Demonstration: Using the software
creating a class diagram cases development platform
OO analysis - Dynamic UML diagrams Java technology overview Exercise: Java programming - Defining
Exercise: Developing sequence diagrams Demonstration: Programming Java with some classes
OO design for implementation - the SDK OO analysis - Static UML diagrams
Associations Introduction to the Java language Exercise: Finding candidate objects and
Exercise: Refining the design for a case Demonstration: Using the software creating a class diagram
study (optional) development platform OO analysis - Dynamic UML diagrams
OO design for implementation - Inheritance Exercise: Java programming - Defining Exercise: Developing sequence diagrams
Exercise: Java programming - Implementing some classes OO design for implementation -
a design OO analysis - Static UML diagrams Associations
Designing for change Exercise: Finding candidate objects and Exercise: Refining the design for a case
Exercise: Java programming - Improving the creating a class diagram study (optional)
implementation OO analysis - Dynamic UML diagrams OO design for implementation -
Methodologies Exercise: Developing sequence diagrams Inheritance
Course summary OO design for implementation - Exercise: Java programming -

Associations Implementing a design
Exercise: Refining the design for a case Designing for change

line study (optional) Exercise: Java programming - Improving
Exercise: Identifying candidate objects in a OO design for implementation - the implementation
case study Inheritance Methodologies
Object concepts Exercise: Java programming - Course summary
Exercise: Identifying classes and methods in Implementing a design
a case study Designing for change
Key principles of object-oriented Exercise: Java programming - Improving line
programming the implementation Exercise: Identifying candidate objects in a
Exercise: Identifying classes and Methodologies case study
associations in a case study Course summary Object concepts
Introduction to UML Exercise: Identifying classes and methods
Development project life cycle in a case study
Requirements and use cases line Key principles of object-oriented
Exercise: Identifying actors and use cases Exercise: Identifying candidate objects in programming
Java technology overview a case study Exercise: Identifying classes and

WD150G www.globalknowledge.com.eg training@globalknowledge.com.eg 00 20 (0) 2 2269 1982 or 16142

Demonstration: Programming Java with the Object concepts associations in a case study
SDK Exercise: Identifying classes and Introduction to UML
Introduction to the Java language methods in a case study Development project life cycle
Demonstration: Using the software Key principles of object-oriented Requirements and use cases
development platform programming Exercise: Identifying actors and use cases
Exercise: Java programming - Defining Exercise: Identifying classes and Java technology overview
some classes associations in a case study Demonstration: Programming Java with
OO analysis - Static UML diagrams Introduction to UML the SDK
Exercise: Finding candidate objects and Development project life cycle Introduction to the Java language
creating a class diagram Requirements and use cases Demonstration: Using the software
OO analysis - Dynamic UML diagrams Exercise: Identifying actors and use development platform
Exercise: Developing sequence diagrams cases Exercise: Java programming - Defining
OO design for implementation - Java technology overview some classes
Associations Demonstration: Programming Java with OO analysis - Static UML diagrams
Exercise: Refining the design for a case the SDK Exercise: Finding candidate objects and
study (optional) Introduction to the Java language creating a class diagram
OO design for implementation - Inheritance Demonstration: Using the software OO analysis - Dynamic UML diagrams
Exercise: Java programming - Implementing development platform Exercise: Developing sequence diagrams
a design Exercise: Java programming - Defining OO design for implementation -
Designing for change some classes Associations
Exercise: Java programming - Improving the OO analysis - Static UML diagrams Exercise: Refining the design for a case
implementation Exercise: Finding candidate objects and study (optional)
Methodologies creating a class diagram OO design for implementation -
Course summary OO analysis - Dynamic UML diagrams Inheritance

Exercise: Developing sequence diagrams Exercise: Java programming -
OO design for implementation - Implementing a design

line Associations Designing for change
Exercise: Identifying candidate objects in a Exercise: Refining the design for a case Exercise: Java programming - Improving
case study study (optional) the implementation
Object concepts OO design for implementation - Methodologies
Exercise: Identifying classes and methods in Inheritance Course summary
a case study Exercise: Java programming -
Key principles of object-oriented Implementing a design
programming Designing for change line
Exercise: Identifying classes and Exercise: Java programming - Improving Exercise: Identifying candidate objects in a
associations in a case study the implementation case study
Introduction to UML Methodologies Object concepts
Development project life cycle Course summary Exercise: Identifying classes and methods
Requirements and use cases in a case study
Exercise: Identifying actors and use cases Key principles of object-oriented
Java technology overview line programming
Demonstration: Programming Java with the Exercise: Identifying candidate objects in Exercise: Identifying classes and
SDK a case study associations in a case study
Introduction to the Java language Object concepts Introduction to UML
Demonstration: Using the software Exercise: Identifying classes and Development project life cycle
development platform methods in a case study Requirements and use cases
Exercise: Java programming - Defining Key principles of object-oriented Exercise: Identifying actors and use cases
some classes programming Java technology overview
OO analysis - Static UML diagrams Exercise: Identifying classes and Demonstration: Programming Java with
Exercise: Finding candidate objects and associations in a case study the SDK
creating a class diagram Introduction to UML Introduction to the Java language
OO analysis - Dynamic UML diagrams Development project life cycle Demonstration: Using the software
Exercise: Developing sequence diagrams Requirements and use cases development platform
OO design for implementation - Exercise: Identifying actors and use Exercise: Java programming - Defining
Associations cases some classes
Exercise: Refining the design for a case Java technology overview OO analysis - Static UML diagrams
study (optional) Demonstration: Programming Java with Exercise: Finding candidate objects and
OO design for implementation - Inheritance the SDK creating a class diagram
Exercise: Java programming - Implementing Introduction to the Java language OO analysis - Dynamic UML diagrams
a design Demonstration: Using the software Exercise: Developing sequence diagrams
Designing for change development platform OO design for implementation -
Exercise: Java programming - Improving the Exercise: Java programming - Defining Associations
implementation some classes Exercise: Refining the design for a case
Methodologies OO analysis - Static UML diagrams study (optional)
Course summary Exercise: Finding candidate objects and OO design for implementation -

creating a class diagram Inheritance

WD150G www.globalknowledge.com.eg training@globalknowledge.com.eg 00 20 (0) 2 2269 1982 or 16142

OO analysis - Dynamic UML diagrams Exercise: Java programming -
line Exercise: Developing sequence diagrams Implementing a design

Exercise: Identifying candidate objects in a OO design for implementation - Designing for change
case study Associations Exercise: Java programming - Improving
Object concepts Exercise: Refining the design for a case the implementation
Exercise: Identifying classes and methods in study (optional) Methodologies
a case study OO design for implementation - Course summary
Key principles of object-oriented Inheritance
programming Exercise: Java programming -
Exercise: Identifying classes and Implementing a design
associations in a case study Designing for change
Introduction to UML Exercise: Java programming - Improving
Development project life cycle the implementation
Requirements and use cases Methodologies
Exercise: Identifying actors and use cases Course summary
Java technology overview
Demonstration: Programming Java with the
SDK line
Introduction to the Java language Exercise: Identifying candidate objects in
Demonstration: Using the software a case study
development platform Object concepts
Exercise: Java programming - Defining Exercise: Identifying classes and
some classes methods in a case study
OO analysis - Static UML diagrams Key principles of object-oriented
Exercise: Finding candidate objects and programming
creating a class diagram Exercise: Identifying classes and
OO analysis - Dynamic UML diagrams associations in a case study
Exercise: Developing sequence diagrams Introduction to UML
OO design for implementation - Development project life cycle
Associations Requirements and use cases
Exercise: Refining the design for a case Exercise: Identifying actors and use
study (optional) cases
OO design for implementation - Inheritance Java technology overview
Exercise: Java programming - Implementing Demonstration: Programming Java with
a design the SDK
Designing for change Introduction to the Java language
Exercise: Java programming - Improving the Demonstration: Using the software
implementation development platform
Methodologies Exercise: Java programming - Defining
Course summary some classes

OO analysis - Static UML diagrams
Exercise: Finding candidate objects and
creating a class diagram
OO analysis - Dynamic UML diagrams
Exercise: Developing sequence diagrams
OO design for implementation -
Associations
Exercise: Refining the design for a case
study (optional)
OO design for implementation -
Inheritance
Exercise: Java programming -
Implementing a design
Designing for change
Exercise: Java programming - Improving
the implementation
Methodologies
Course summary

WD150G www.globalknowledge.com.eg training@globalknowledge.com.eg 00 20 (0) 2 2269 1982 or 16142

Further Information:

For More information, or to book your course, please call us on 00 20 (0) 2 2269 1982 or 16142

training@globalknowledge.com.eg

www.globalknowledge.com.eg

Global Knowledge, 16 Moustafa Refaat St. Block 1137, Sheraton Buildings, Heliopolis, Cairo

http://www.globalknowledge.com.eg

