
RHD361 www.globalknowledge.co.uk info@globalknowledge.co.uk 01189 123456

Red Hat Enterprise Linux Kernel Internals

Duration: 5 Days Course Code: RHD361

Overview:

Red Hat® Enterprise Linux® Kernel Internals (RHD361) is a hands-on course providing experienced developers an intensive, low-level
examination of the Linux kernel architecture.
Topics include kernel compilation, debugging tools and techniques, and internal kernel APIs, including synchronization, process management,
and memory management. These topics provide a solid understanding of the kernel’s architecture, providing a useful base from which more
specialized topics, like those presented in Red Hat Enterprise System Monitoring and Performance Tuning (RH442) or Red Hat Enterprise
Linux Kernel Device Drivers (RHD362), can be addressed.

Target Audience:

Experienced developers who want to gain a thorough understanding of the Linux kernel architecture.

Objectives:

Working with the Developer Community Device Driver Overview

User Mode and Kernel Mode Memory Management

Kernel Compilation and Tools Processes

Modules The Scheduler

Kernel API Overview Kernel Timing

Synchronization SystemTapSystem and Kernel InitializationKernel Debugging 2:
Crash Dumps

Kernel Debugging 1: Tools and Techniques
Unit 17 - Red Hat Enterprise Linux Realtime Kernel

Interrupts

Prerequisites:

Experience in C programming
Knowledge of systems programming in a UNIX or Linux
environment
Register-level hardware programming knowledge is
recommended but not required
Familiarity with basic tools, such as vi, Emacs, and ?le utilities
Familiarity with UNIX development tools, such as gcc and make

Follow-on-Courses:
RHD362, Red Hat Enterprise Linux Kernel Device Drivers

RHD361 www.globalknowledge.co.uk info@globalknowledge.co.uk 01189 123456

Content:

Working with the Developer Community Kernel Debugging 1: Tools and Techniques Kernel Timing
line line line

Community Linux Kernel Development Debugging Preparations The Need for Timing
Why Contribute Kernel Code Upstream? kernel-debuginfo Warnings Timing Hardware
Licensing Kernel vs. User Space Timing Source Selection
Copyright Live vs. Postmortem Debugging Wall/Real Time: xtime
Submitted Work Crashes vs. Hangs Wall Clock System Calls
The Kernel Development Process Debugging Device Drivers Kernel Ticks: jiffies
Creating Patches for the Merge Window User Space Debugging Tools Software Timers
Staging Trees /proc Kernel Information POSIX Timers

kernel.panic Tunable and Kernel Crashes Interval Timers and alarm()
User Mode and Kernel Mode /sys Filesystem High-Resolution Timers
line debugfs Filesystem Timer Interrupt Handler

The Linux Kernel - An Overview Printing from the Kernel TIMER_SOFTIRQ Softirq
The Role of the Kernel Kernel Oops Messages Delay Functions
Kernel Contexts SysRq Mechanism
Four Milliseconds in the Life of the Kernel sosreport SystemTap
System Ring Levels The crash Tool line
Kernel Mode crash Requirements Introduction to SystemTap
User Mode crash Installation SystemTap's Main Components
Mode Switching Example: System Calls crash Invocation Monitoring the Kernel with SystemTap
x86 System Call Interface crash Invocation Output The stap Command
x86 System Call Interface (cont.) crash Help Flow of Data in SystemTap
Mode Switching Example: IRQ Event crash Command Input Common Tapset Probe Points
Kernel Mode Linux crash Command Output SystemTap Script Examples

crash Command Overview
Kernel Compilation and Tools crash Default Context System and Kernel Initialization
line line

Kernel Packages Interrupts Boot Sequence Overview
Kernel Version line BIOS Initialization
Kernel Documentation Interrupts Bootloader
Kernel Source Layout Nature of Interrupts Starting the Boot Process: GRUB
Kernel Source Layout (cont.) Types of Interrupts Bootloader Components
Recompiling the Red Hat Kernel Interrupt Specific Hardware The Chicken/Egg Module Problem and the
Install Kernel Development Packages Interrupt Descriptor Table (IDT) Initial RAM Disk
Kernel Source Package IDT Initialization GRUB and grub.conf
Preparing Source Code for Compilation IDT Initialization Functions Kernel Initialization Overview
Customizing Kernel Name (Optional) Exception Handling __init and __initdata
Choosing Compilation Options Asynchronous Interrupt Handling Initialization Subsections and Ordering
Compiling the Kernel and Modules Interrupt Handler Considerations Kernel Initialization
Installing the Kernel Modules irq_desc Structure init/main.c: start_kernel()
Installing the Compiled Kernel and Related irqaction Structure init/main.c: rest_init()
Files Interrupt Handler Registration init/main.c: init()
Kernel Application Binary Interface (kABI) Performing Deferred Work init/main.c: do_basic_setup()
cscope Softirqs init/main.c: init_post()
LXR Using Softirqs init Initialization
git Tasklets Run Levels
git Documentation Using Tasklets

Work Queues Kernel Debugging 2: Crash Dumps
Modules Work Queue Data Structures line
line Using Work Queues Introduction to Crash Dumps

Kernel Modules Netdump/Diskdump Challenges
Kernel Module Utilities Device Driver Overview Kdump
Mapping Modules to Attached Devices line Kdump Solution
Kernel Module Essentials Device Drivers Kexec
modinfo Macros Device Types Relocatable Kernel
printk() Device Nodes In-place Kernel Decompression
/proc/kmsg and klogd Creating a Device Node Starting Kdump
printk() Loglevels Dynamic Loading of Driver Modules Kdump Initrd Image
Rate Limiting printk() Major and Minor Numbers Configuring Kdump
Putting It All Together: A Simple Module Dynamic Major and Minor Numbers Kdump Core Dumps to the Local System
Compiling a Module Dynamically Created Device Nodes Kdump Core Dumps to NFS Mount Points
Integrating A New Module with the Kernel Dynamically Created Device Nodes Made Kdump Core Dumps to SSH Servers
Makefile and Kconfig Easy Dump File Size

RHD361 www.globalknowledge.co.uk info@globalknowledge.co.uk 01189 123456

Module Parameters Device Driver Essentials Customizing the Dump Capture Method:
Example: Module with Parameter Character Device Registration makedumpfile

Device Driver File Operations Dump Filtering
Kernel API Overview Driver Methods Dump Compression
line The file Structure Future Challenges

Multitasking, Stacks, and Task-Descriptors The inode Structure
Contents of a Program's Stack The open and release Methods Unit 17 - Red Hat Enterprise Linux Realtime
Kernel Mode Switch and the Stack The read and write Methods Kernel
Task Structures Module Usage Count line
What Is a Process? Simple Character Driver Example Realtime (RT) Linux
thread_info Structure Benefits of a Realtime Kernel
task_struct: Process Identifiers Memory Management Response Time Comparisons
task_struct: Process State line Wake-Up Response Time Example
task_struct: Scheduling Information Virtual Memory and Paging Changes in the Kernel
Doubly Linked Lists x86 Memory Architecture Changes in the C Library
Doubly Linked Lists: Manipulation Memory Segmentation in Linux RT Measurement Tools
Doubly Linked Lists: Iteration x86 Segmentation RT Tuning Tools
Doubly Linked Lists: Processes x86 Segmentation in Linux RT Tuning Methods
task_struct: Related Processes Memory Paging Loading the RT Kernel
task_struct: Statistics Page Tables
Allocating Kernel Memory: kmalloc() Mapping Virtual Addresses (x86)
Memory Cache Optimizations: Branch Mapping Virtual Addresses (x86-64)
Prediction Memory Zones
Memory Cache Optimizations: Binding Arranging the Virtual Address Space
Structures ZONE_NORMAL
Generating Kernel Errors ZONE_HIGHMEM

ZONE_DMA
Synchronization Kernel Memory Allocation
line Memory Management

Critical Sections Buddy Allocator
Mutual Exclusion Devices Requesting and Releasing Page Frames
Linux Mutex Toolbox Slab Allocator
Atomic Bit Operations Slab Allocator (cont.)
Atomic Integers Non-Contiguous Memory Area
Spinlocks Management
Spinlocks and Local Interrupts Memory Flags: gfp_mask
Read-Write Spinlocks __get_free_pages()
Mutexes kmalloc()
Semaphores vmalloc()
Spinlock/Mutex Example
Alternatives to Locking Processes
Sequential Locks line
Read-Copy-Update (RCU) Creating Processes
Linux RCU Implementation Sharing Resources
Per-CPU Variables do_fork()
Completions Process Memory Maps
The Big Kernel Lock Memory Areas

vm_flags
pmap
Kernel Threads
Process 0
Destroying Processes
Context Switches
When Does Context Switching Occur?
When Is need_resched Set?
When Is schedule() Called?
Kernel Preemption

The Scheduler
line

Priority
Priority for Normal Processes
Priority for Real-Time Processes
Time Slices
The O(1) Scheduler: Run Queues
The O(1) Scheduler: Priority Arrays

RHD361 www.globalknowledge.co.uk info@globalknowledge.co.uk 01189 123456

The O(1) Scheduler: How it works
Wait Queues
The O(1) Scheduler: Load Balancing
The O(1) Scheduler: load_balance()
Problems with the O(1) Scheduler
O(1) Scheduler vs. CFS
Overview of CFS
Details of CFS
CFS Task Scheduling
CFS Scheduler Policies
CFS Scheduler Classes
CFS fair_sched_class
CFS Tuning
CFS Group Scheduling
CONFIG_FAIR_GROUP_SCHED
CONFIG_FAIR_CGROUP_SCHED

Further Information:

For More information, or to book your course, please call us on Head Office 01189 123456 / Northern Office 0113 242 5931

info@globalknowledge.co.uk

www.globalknowledge.co.uk

Global Knowledge, Mulberry Business Park, Fishponds Road, Wokingham Berkshire RG41 2GY UK

http://www.globalknowledge.co.uk

