

Architecting with Google Cloud Platform: Design and Process

Duration: 2 Days Course Code: GO5974

Overview:

This two-day instructor-led Google Cloud Platform class equips students to build highly reliable and efficient solutions on Google Cloud using proven design patterns. It is a continuation of the Architecting with Google Compute Engine or Architecting with Google Kubernetes Engine course and assumes hands-on experience with the technologies covered in either of those courses.

Through a combination of presentations, design activities, and hands-on labs, participants learn to define and balance business and technical requirements to design Google Cloud deployments that are highly reliable, highly available, secure, and cost-effective.

Target Audience:

This class is intended for the following participants: Cloud Solutions Architects, Site Reliability Engineers, Systems Operations professionals, DevOps Engineers, IT managers and Individuals using Google Cloud to create new solutions or to integrate existing systems, application environments, and infrastructure

Objectives:

- This course teaches participants the following skills:
- Apply a tool set of questions, techniques, and design considerations
- Define application requirements and express them objectively as KPIs, SLOs and SLIs
- Decompose application requirements to find the right microservice boundaries
- Leverage Google Cloud developer tools to set up modern, automated deployment pipelines
- Choose the appropriate Cloud Storage services based on application requirements

- Architect cloud and hybrid networks
- Implement reliable, scalable, resilient applications balancing key performance metrics with cost
- Choose the right Google Cloud deployment services for your applications
- Secure cloud applications, data, and infrastructure
- Monitor service level objectives and costs using Google Cloud tools

Prerequisites:

To get the most out of this course, participants should have:

Completed Architecting with Google Compute Engine, Architecting with Google Kubernetes, or have equivalent experience

Basic proficiency with command-line tools and Linux operating system environments

Systems? ?operations? ?experience,? ?including? ?deploying? ?and? ?managing? ?applications,? ?either? ?on-premises? ?or? ?in? ?a? ?public? ?cloud environment

Content:

Module 1: Defining the Service	Module 4: Choosing Storage Solutions	Module 7: Designing Reliable Systems
Describe users in terms of roles and personas	Choose the appropriate Google Cloud data storage service based on use case, durability, availability, scalability and cost	Design services to meet requirements for availability, durability, and scalability
Write qualitative requirements with user stories	, , , , , , , , , , , , , , , , , , ,	
Write quantitative requirements using key performance indicators (KPIs)	Store binary data with Cloud Storage	Implement fault-tolerant systems by avoiding single points of failure, correlated failures, and cascading failures
	Store relational data using Cloud SQL and	
Evaluate KPIs using SLOs and SLIs	Spanner	Avoid overload failures with the circuit breaker and truncated exponential backoff design patterns
 Determine the quality of application requirements using SMART criteria 	Store NoSQL data using Firestore and Cloud Bigtable	Decima reciliant data etarago with larv
Module 2: Microservice Design and Architecture	Cache data for fast access using	Design resilient data storage with lazy deletion
	Memorystore	Analyze disaster scenarios and plan for disaster recovery using cost/risk analysis
Decompose monolithic applications into microservices	Build a data warehouse using BigQuery	Module 8: Security
microservices	Module 5: Google Cloud and Hybrid Network Architecture	Module 6. Security
Recognize appropriate microservice boundaries		Design secure systems using best practices
Architect stateful and stateless services to optimize scalability and reliability	Design VPC networks to optimize for cost, security, and performance	like separation of concerns, principle of least privilege, and regular audits
Implement services using 12-factor best practices	Configure global and regional load balancers to provide access to services	Leverage Cloud Security Command Center to help identify vulnerabilities
Build loosely coupled services by implementing a well-designed	Leverage Cloud CDN to provide lower latency and decrease network egress	Simplify cloud governance using organizational policies and folders
REST architecture	Evaluate network architecture using the Cloud Network Intelligence Center	Secure people using IAM roles, Identity-Aware Proxy, and Identity Platform
Design consistent, standard RESTful service APIs	Connect networks using peering and VPNs	Manage the access and authorization of resources by machines and processes using service accounts
Module 3: DevOps Automation	Create hybrid networks between Google Cloud and on-premises data centers	
Automate service deployment using CI/CD pipelines	using Cloud Interconnect Module 6: Deploying Applications to Google	Secure networks with private IPs, firewalls, and Private Google Access
	Cloud	Mitigate DDoS attacks by leveraging Cloud DNS and Cloud Armor
Leverage Cloud Source Repositories for source and version control	Choose the appropriate Google Cloud deployment service for your applications	Module 9: Maintenance and Monitoring
Automate builds with Cloud Build and build triggers	Configure scalable, resilient infrastructure using Instance Templates and Groups	Manage new service versions using rolling updates, blue/green deployments, and canary releases
Manage container images with Google Container Registry	Orchestrate microservice deployments using	Forecast, monitor, and optimize service cost

Create infrastructure with code using Deployment Manager and Terraform Kubernetes and GKE

Leverage App Engine for a completely automated platform as a service (PaaS)

Create serverless applications using Cloud Functions using the Google Cloud pricing calculator and billing reports and by analyzing billing data

Observe whether your services are meeting their SLOs using Cloud Monitoring and Dashboards

Use Uptime Checks to determine service availability

 Respond to service outages using Cloud Monitoring Alerts

Further Information:

For More information, or to book your course, please call us on 0800/84.009 info@globalknowledge.be
www.globalknowledge.com/en-be/