
M-AZ400 www.globalknowledge.com/en-be/ info@globalknowledge.be 0800/84.009

Designing and Implementing Microsoft DevOps solutions

Duration: 5 Days Course Code: M-AZ400

Overview:

This course provides the knowledge and skills to design and implement DevOps processes and practices. Students will learn how to plan for
DevOps, use source control, scale Git for an enterprise, consolidate artifacts, design a dependency management strategy, manage secrets,
implement continuous integration, implement a container build strategy, design a release strategy, set up a release management workflow,
implement a deployment pattern, and optimize feedback mechanisms.

Target Audience:

Students in this course are interested in designing and implementing DevOps processes or in passing the Microsoft Azure DevOps Solutions
certification exam.

Objectives:

Plan for the transformation with shared goals and timelines Use Git to foster inner source across the organization

Select a project and identify project metrics and Key Explain the role of Azure Pipelines and its components
Performance Indicators (KPI's)

Configure Agents for use in Azure Pipelines
Create a team and agile organizational structure

Explain why continuous integration matters
Design a tool integration strategy

Implement continuous integration using Azure Pipelines
Design a license management strategy (e.g. Azure DevOps and
GitHub users) Define Site Reliability Engineering

Design a strategy for end-to-end traceability from work items to Design processes to measure end-user satisfaction and analyze
working software user feedback

Design an authentication and access strategy Design processes to automate application analytics

Design a strategy for integrating on-premises and cloud Manage alerts and reduce meaningless and non-actionable alerts
resources

Carry out blameless retrospectives and create a just culture
Describe the benefits of using Source Control

Define an infrastructure and configuration strategy and appropriate
Describe Azure Repos and GitHub toolset for a release pipeline and application infrastructure

Migrate from TFVC to Git Implement compliance and security in your application infrastructure

Manage code quality including technical debt SonarCloud, and Describe the potential challenges with integrating open-source
other tooling solutions software

Build organizational knowledge on code quality Inspect open-source software packages for security and license
compliance

Explain how to structure Git repos
Manage organizational security and compliance policies

Describe Git branching workflows
Integrate license and vulnerability scans into build and deployment

Leverage pull requests for collaboration and code reviews pipelines

Leverage Git hooks for automation Configure build pipelines to access package security and license
ratings

M-AZ400 www.globalknowledge.com/en-be/ info@globalknowledge.be 0800/84.009

Prerequisites:

Successful learners will have prior knowledge and understanding
of:

Cloud computing concepts, including an understanding of PaaS,
SaaS, and IaaS implementations.
Both Azure administration and Azure development with proven
expertise in at least one of these areas.
Version control, Agile software development, and core software
development principles. It would be helpful to have experience in
an organization that delivers software.
M-AZ104 - Microsoft Azure Administrator (AZ-104)
M-AZ204 - Developing Solutions for Microsoft Azure (AZ-204)

M-AZ400 www.globalknowledge.com/en-be/ info@globalknowledge.be 0800/84.009

Content:

Module 1: Planning for DevOps Module 8: Implementing Continuous Lab : Deploying Apps with Chef on Azure
line Integration with GitHub Actions line

Transformation Planning line
Project Selection GitHub Actions Lab : Deploy App with Puppet on Azure
Team Structures Continuous Integration with GitHub line
Migrating to Azure DevOps Actions

Securing Secrets for GitHub Actions Lab : Ansible with Azure
Lab : Agile Planning and Portfolio Management line
with Azure Boards Lab : GitHub Actions Continuous Integration
line line After completing this module, students will be

able to:
After completing this module, students will be After completing this module, students will be line
able to: able to: Plan for the transformation with shared
line line goals and timelines

Plan for the transformation with shared Plan for the transformation with shared Select a project and identify project
goals and timelines goals and timelines metrics and Key Performance Indicators
Select a project and identify project metrics Select a project and identify project (KPI's)
and Key Performance Indicators (KPI's) metrics and Key Performance Indicators Create a team and agile organizational
Create a team and agile organizational (KPI's) structure
structure Create a team and agile organizational Design a tool integration strategy
Design a tool integration strategy structure Design a license management strategy
Design a license management strategy (e.g. Design a tool integration strategy (e.g. Azure DevOps and GitHub users)
Azure DevOps and GitHub users) Design a license management strategy Design a strategy for end-to-end
Design a strategy for end-to-end traceability (e.g. Azure DevOps and GitHub users) traceability from work items to working
from work items to working software Design a strategy for end-to-end software
Design an authentication and access traceability from work items to working Design an authentication and access
strategy software strategy
Design a strategy for integrating Design an authentication and access Design a strategy for integrating
on-premises and cloud resources strategy on-premises and cloud resources
Describe the benefits of using Source Design a strategy for integrating Describe the benefits of using Source
Control on-premises and cloud resources Control
Describe Azure Repos and GitHub Describe the benefits of using Source Describe Azure Repos and GitHub
Migrate from TFVC to Git Control Migrate from TFVC to Git
Manage code quality including technical Describe Azure Repos and GitHub Manage code quality including technical
debt SonarCloud, and other tooling solutions Migrate from TFVC to Git debt SonarCloud, and other tooling
Build organizational knowledge on code Manage code quality including technical solutions
quality debt SonarCloud, and other tooling Build organizational knowledge on code
Explain how to structure Git repos solutions quality
Describe Git branching workflows Build organizational knowledge on code Explain how to structure Git repos
Leverage pull requests for collaboration and quality Describe Git branching workflows
code reviews Explain how to structure Git repos Leverage pull requests for collaboration
Leverage Git hooks for automation Describe Git branching workflows and code reviews
Use Git to foster inner source across the Leverage pull requests for collaboration Leverage Git hooks for automation
organization and code reviews Use Git to foster inner source across the
Explain the role of Azure Pipelines and its Leverage Git hooks for automation organization
components Use Git to foster inner source across the Explain the role of Azure Pipelines and its
Configure Agents for use in Azure Pipelines organization components
Explain why continuous integration matters Explain the role of Azure Pipelines and its Configure Agents for use in Azure
Implement continuous integration using components Pipelines
Azure Pipelines Configure Agents for use in Azure Explain why continuous integration matters
Manage application configuration and Pipelines Implement continuous integration using
secrets Explain why continuous integration Azure Pipelines
Integrate Azure Key Vault with a pipeline matters Manage application configuration and
Create and work with GitHub Actions and Implement continuous integration using secrets
Workflows Azure Pipelines Integrate Azure Key Vault with a pipeline
Implement Continuous Integration with Manage application configuration and Create and work with GitHub Actions and
GitHub Actions secrets Workflows
Recommend artifact management tools and Integrate Azure Key Vault with a pipeline Implement Continuous Integration with
practices Create and work with GitHub Actions and GitHub Actions
Abstract common packages to enable Workflows Recommend artifact management tools
sharing and reuse Implement Continuous Integration with and practices
Migrate and consolidate artifacts GitHub Actions Abstract common packages to enable
Migrate and integrate source control Recommend artifact management tools sharing and reuse

M-AZ400 www.globalknowledge.com/en-be/ info@globalknowledge.be 0800/84.009

measures and practices Migrate and consolidate artifacts
Differentiate between a release and a Abstract common packages to enable Migrate and integrate source control
deployment sharing and reuse measures
Define the components of a release pipeline Migrate and consolidate artifacts Differentiate between a release and a
Explain things to consider when designing Migrate and integrate source control deployment
your release strategy measures Define the components of a release
Classify a release versus a release process, Differentiate between a release and a pipeline
and outline how to control the quality of both deployment Explain things to consider when designing
Describe the principle of release gates and Define the components of a release your release strategy
how to deal with release notes and pipeline Classify a release versus a release
documentation Explain things to consider when process, and outline how to control the
Choose a release management tool designing your release strategy quality of both
Explain the terminology used in Azure Classify a release versus a release Describe the principle of release gates and
DevOps and other Release Management process, and outline how to control the how to deal with release notes and
Tooling quality of both documentation
Describe what a Build and Release task is, Describe the principle of release gates Choose a release management tool
what it can do, and some available and how to deal with release notes and Explain the terminology used in Azure
deployment tasks documentation DevOps and other Release Management
Explain why you sometimes need multiple Choose a release management tool Tooling
release jobs in one release pipeline Explain the terminology used in Azure Describe what a Build and Release task is,
Differentiate between multi-agent and DevOps and other Release Management what it can do, and some available
multi-configuration release job Tooling deployment tasks
Use release variables and stage variables in Describe what a Build and Release task Explain why you sometimes need multiple
your release pipeline is, what it can do, and some available release jobs in one release pipeline
Deploy to an environment securely using a deployment tasks Differentiate between multi-agent and
service connection Explain why you sometimes need multi-configuration release job
List the different ways to inspect the health multiple release jobs in one release Use release variables and stage variables
of your pipeline and release by using alerts, pipeline in your release pipeline
service hooks, and reports Differentiate between multi-agent and Deploy to an environment securely using a
Describe deployment patterns multi-configuration release job service connection
Implement Blue Green Deployment Use release variables and stage List the different ways to inspect the health
Implement Canary Release variables in your release pipeline of your pipeline and release by using
Implement Progressive Exposure Deploy to an environment securely using alerts, service hooks, and reports
Deployment a service connection Describe deployment patterns
Apply infrastructure and configuration as List the different ways to inspect the Implement Blue Green Deployment
code principles. health of your pipeline and release by Implement Canary Release
Deploy and manage infrastructure using using alerts, service hooks, and reports Implement Progressive Exposure
Microsoft automation technologies such as Describe deployment patterns Deployment
ARM templates, PowerShell, and Azure CLI Implement Blue Green Deployment Apply infrastructure and configuration as
Deploy and configure infrastructure using Implement Canary Release code principles.
3rd party tools and services with Azure, such Implement Progressive Exposure Deploy and manage infrastructure using
as Chef, Puppet, Ansible, and Terraform Deployment Microsoft automation technologies such as
Implement a container strategy including Apply infrastructure and configuration as ARM templates, PowerShell, and Azure
how containers are different from virtual code principles. CLI
machines and how microservices use Deploy and manage infrastructure using Deploy and configure infrastructure using
containers Microsoft automation technologies such 3rd party tools and services with Azure,
Implement containers using Docker as ARM templates, PowerShell, and such as Chef, Puppet, Ansible, and
Implement Docker multi-stage builds Azure CLI Terraform
Deploy and configure a Managed Deploy and configure infrastructure using Implement a container strategy including
Kubernetes cluster 3rd party tools and services with Azure, how containers are different from virtual
Implement tools to track system usage, such as Chef, Puppet, Ansible, and machines and how microservices use
feature usage, and flow Terraform containers
Configure crash report integration for client Implement a container strategy including Implement containers using Docker
applications how containers are different from virtual Implement Docker multi-stage builds
Implement routing for client application machines and how microservices use Deploy and configure a Managed
crash report data containers Kubernetes cluster
Develop monitoring and status dashboards Implement containers using Docker Implement tools to track system usage,
Integrate and configure ticketing systems Implement Docker multi-stage builds feature usage, and flow
with development team's work management Deploy and configure a Managed Configure crash report integration for client
Define Site Reliability Engineering Kubernetes cluster applications
Design processes to measure end-user Implement tools to track system usage, Implement routing for client application
satisfaction and analyze user feedback feature usage, and flow crash report data
Design processes to automate application Configure crash report integration for Develop monitoring and status dashboards
analytics client applications Integrate and configure ticketing systems
Manage alerts and reduce meaningless and Implement routing for client application with development team's work

M-AZ400 www.globalknowledge.com/en-be/ info@globalknowledge.be 0800/84.009

non-actionable alerts crash report data management
Carry out blameless retrospectives and Develop monitoring and status Define Site Reliability Engineering
create a just culture dashboards Design processes to measure end-user
Define an infrastructure and configuration Integrate and configure ticketing systems satisfaction and analyze user feedback
strategy and appropriate toolset for a with development team's work Design processes to automate application
release pipeline and application management analytics
infrastructure Define Site Reliability Engineering Manage alerts and reduce meaningless
Implement compliance and security in your Design processes to measure end-user and non-actionable alerts
application infrastructure satisfaction and analyze user feedback Carry out blameless retrospectives and
Describe the potential challenges with Design processes to automate create a just culture
integrating open-source software application analytics Define an infrastructure and configuration
Inspect open-source software packages for Manage alerts and reduce meaningless strategy and appropriate toolset for a
security and license compliance and non-actionable alerts release pipeline and application
Manage organizational security and Carry out blameless retrospectives and infrastructure
compliance policies create a just culture Implement compliance and security in your
Integrate license and vulnerability scans into Define an infrastructure and configuration application infrastructure
build and deployment pipelines strategy and appropriate toolset for a Describe the potential challenges with
Configure build pipelines to access package release pipeline and application integrating open-source software
security and license ratings infrastructure Inspect open-source software packages

Implement compliance and security in for security and license compliance
Module 2: Getting Started with Source Control your application infrastructure Manage organizational security and
line Describe the potential challenges with compliance policies

What is Source Control integrating open-source software Integrate license and vulnerability scans
Benefits of Source Control Inspect open-source software packages into build and deployment pipelines
Types of Source Control Systems for security and license compliance Configure build pipelines to access
Introduction to Azure Repos Manage organizational security and package security and license ratings
Introduction to GitHub compliance policies
Migrating from Team Foundation Version Integrate license and vulnerability scans Module 15: Managing Containers using
Control (TFVC) to Git in Azure Repos into build and deployment pipelines Docker

Configure build pipelines to access line
Lab : Version Controlling with Git in Azure package security and license ratings Implementing a Container Build Strategy
Repos Implementing Docker Multi-Stage Builds
line Module 9: Designing and Implementing a

Dependency Management Strategy Lab : Modernizing Existing ASP.NET Apps
After completing this module, students will be line with Azure
able to: Packaging Dependencies line
line Package Management

Plan for the transformation with shared Migrating and Consolidating Artifacts After completing this module, students will be
goals and timelines Package Security able to:
Select a project and identify project metrics Implementing a Versioning Strategy line
and Key Performance Indicators (KPI's) Plan for the transformation with shared
Create a team and agile organizational Lab : Package Management with Azure goals and timelines
structure Artifacts Select a project and identify project
Design a tool integration strategy line metrics and Key Performance Indicators
Design a license management strategy (e.g. (KPI's)
Azure DevOps and GitHub users) After completing this module, students will be Create a team and agile organizational
Design a strategy for end-to-end traceability able to: structure
from work items to working software line Design a tool integration strategy
Design an authentication and access Plan for the transformation with shared Design a license management strategy
strategy goals and timelines (e.g. Azure DevOps and GitHub users)
Design a strategy for integrating Select a project and identify project Design a strategy for end-to-end
on-premises and cloud resources metrics and Key Performance Indicators traceability from work items to working
Describe the benefits of using Source (KPI's) software
Control Create a team and agile organizational Design an authentication and access
Describe Azure Repos and GitHub structure strategy
Migrate from TFVC to Git Design a tool integration strategy Design a strategy for integrating
Manage code quality including technical Design a license management strategy on-premises and cloud resources
debt SonarCloud, and other tooling solutions (e.g. Azure DevOps and GitHub users) Describe the benefits of using Source
Build organizational knowledge on code Design a strategy for end-to-end Control
quality traceability from work items to working Describe Azure Repos and GitHub
Explain how to structure Git repos software Migrate from TFVC to Git
Describe Git branching workflows Design an authentication and access Manage code quality including technical
Leverage pull requests for collaboration and strategy debt SonarCloud, and other tooling
code reviews Design a strategy for integrating solutions
Leverage Git hooks for automation on-premises and cloud resources Build organizational knowledge on code

M-AZ400 www.globalknowledge.com/en-be/ info@globalknowledge.be 0800/84.009

Use Git to foster inner source across the Describe the benefits of using Source quality
organization Control Explain how to structure Git repos
Explain the role of Azure Pipelines and its Describe Azure Repos and GitHub Describe Git branching workflows
components Migrate from TFVC to Git Leverage pull requests for collaboration
Configure Agents for use in Azure Pipelines Manage code quality including technical and code reviews
Explain why continuous integration matters debt SonarCloud, and other tooling Leverage Git hooks for automation
Implement continuous integration using solutions Use Git to foster inner source across the
Azure Pipelines Build organizational knowledge on code organization
Manage application configuration and quality Explain the role of Azure Pipelines and its
secrets Explain how to structure Git repos components
Integrate Azure Key Vault with a pipeline Describe Git branching workflows Configure Agents for use in Azure
Create and work with GitHub Actions and Leverage pull requests for collaboration Pipelines
Workflows and code reviews Explain why continuous integration matters
Implement Continuous Integration with Leverage Git hooks for automation Implement continuous integration using
GitHub Actions Use Git to foster inner source across the Azure Pipelines
Recommend artifact management tools and organization Manage application configuration and
practices Explain the role of Azure Pipelines and its secrets
Abstract common packages to enable components Integrate Azure Key Vault with a pipeline
sharing and reuse Configure Agents for use in Azure Create and work with GitHub Actions and
Migrate and consolidate artifacts Pipelines Workflows
Migrate and integrate source control Explain why continuous integration Implement Continuous Integration with
measures matters GitHub Actions
Differentiate between a release and a Implement continuous integration using Recommend artifact management tools
deployment Azure Pipelines and practices
Define the components of a release pipeline Manage application configuration and Abstract common packages to enable
Explain things to consider when designing secrets sharing and reuse
your release strategy Integrate Azure Key Vault with a pipeline Migrate and consolidate artifacts
Classify a release versus a release process, Create and work with GitHub Actions and Migrate and integrate source control
and outline how to control the quality of both Workflows measures
Describe the principle of release gates and Implement Continuous Integration with Differentiate between a release and a
how to deal with release notes and GitHub Actions deployment
documentation Recommend artifact management tools Define the components of a release
Choose a release management tool and practices pipeline
Explain the terminology used in Azure Abstract common packages to enable Explain things to consider when designing
DevOps and other Release Management sharing and reuse your release strategy
Tooling Migrate and consolidate artifacts Classify a release versus a release
Describe what a Build and Release task is, Migrate and integrate source control process, and outline how to control the
what it can do, and some available measures quality of both
deployment tasks Differentiate between a release and a Describe the principle of release gates and
Explain why you sometimes need multiple deployment how to deal with release notes and
release jobs in one release pipeline Define the components of a release documentation
Differentiate between multi-agent and pipeline Choose a release management tool
multi-configuration release job Explain things to consider when Explain the terminology used in Azure
Use release variables and stage variables in designing your release strategy DevOps and other Release Management
your release pipeline Classify a release versus a release Tooling
Deploy to an environment securely using a process, and outline how to control the Describe what a Build and Release task is,
service connection quality of both what it can do, and some available
List the different ways to inspect the health Describe the principle of release gates deployment tasks
of your pipeline and release by using alerts, and how to deal with release notes and Explain why you sometimes need multiple
service hooks, and reports documentation release jobs in one release pipeline
Describe deployment patterns Choose a release management tool Differentiate between multi-agent and
Implement Blue Green Deployment Explain the terminology used in Azure multi-configuration release job
Implement Canary Release DevOps and other Release Management Use release variables and stage variables
Implement Progressive Exposure Tooling in your release pipeline
Deployment Describe what a Build and Release task Deploy to an environment securely using a
Apply infrastructure and configuration as is, what it can do, and some available service connection
code principles. deployment tasks List the different ways to inspect the health
Deploy and manage infrastructure using Explain why you sometimes need of your pipeline and release by using
Microsoft automation technologies such as multiple release jobs in one release alerts, service hooks, and reports
ARM templates, PowerShell, and Azure CLI pipeline Describe deployment patterns
Deploy and configure infrastructure using Differentiate between multi-agent and Implement Blue Green Deployment
3rd party tools and services with Azure, such multi-configuration release job Implement Canary Release
as Chef, Puppet, Ansible, and Terraform Use release variables and stage Implement Progressive Exposure
Implement a container strategy including variables in your release pipeline Deployment
how containers are different from virtual Deploy to an environment securely using Apply infrastructure and configuration as

M-AZ400 www.globalknowledge.com/en-be/ info@globalknowledge.be 0800/84.009

machines and how microservices use a service connection code principles.
containers List the different ways to inspect the Deploy and manage infrastructure using
Implement containers using Docker health of your pipeline and release by Microsoft automation technologies such as
Implement Docker multi-stage builds using alerts, service hooks, and reports ARM templates, PowerShell, and Azure
Deploy and configure a Managed Describe deployment patterns CLI
Kubernetes cluster Implement Blue Green Deployment Deploy and configure infrastructure using
Implement tools to track system usage, Implement Canary Release 3rd party tools and services with Azure,
feature usage, and flow Implement Progressive Exposure such as Chef, Puppet, Ansible, and
Configure crash report integration for client Deployment Terraform
applications Apply infrastructure and configuration as Implement a container strategy including
Implement routing for client application code principles. how containers are different from virtual
crash report data Deploy and manage infrastructure using machines and how microservices use
Develop monitoring and status dashboards Microsoft automation technologies such containers
Integrate and configure ticketing systems as ARM templates, PowerShell, and Implement containers using Docker
with development team's work management Azure CLI Implement Docker multi-stage builds
Define Site Reliability Engineering Deploy and configure infrastructure using Deploy and configure a Managed
Design processes to measure end-user 3rd party tools and services with Azure, Kubernetes cluster
satisfaction and analyze user feedback such as Chef, Puppet, Ansible, and Implement tools to track system usage,
Design processes to automate application Terraform feature usage, and flow
analytics Implement a container strategy including Configure crash report integration for client
Manage alerts and reduce meaningless and how containers are different from virtual applications
non-actionable alerts machines and how microservices use Implement routing for client application
Carry out blameless retrospectives and containers crash report data
create a just culture Implement containers using Docker Develop monitoring and status dashboards
Define an infrastructure and configuration Implement Docker multi-stage builds Integrate and configure ticketing systems
strategy and appropriate toolset for a Deploy and configure a Managed with development team's work
release pipeline and application Kubernetes cluster management
infrastructure Implement tools to track system usage, Define Site Reliability Engineering
Implement compliance and security in your feature usage, and flow Design processes to measure end-user
application infrastructure Configure crash report integration for satisfaction and analyze user feedback
Describe the potential challenges with client applications Design processes to automate application
integrating open-source software Implement routing for client application analytics
Inspect open-source software packages for crash report data Manage alerts and reduce meaningless
security and license compliance Develop monitoring and status and non-actionable alerts
Manage organizational security and dashboards Carry out blameless retrospectives and
compliance policies Integrate and configure ticketing systems create a just culture
Integrate license and vulnerability scans into with development team's work Define an infrastructure and configuration
build and deployment pipelines management strategy and appropriate toolset for a
Configure build pipelines to access package Define Site Reliability Engineering release pipeline and application
security and license ratings Design processes to measure end-user infrastructure

satisfaction and analyze user feedback Implement compliance and security in your
Module 3: Managing Technical Debt Design processes to automate application infrastructure
line application analytics Describe the potential challenges with

Identifying Technical Debt Manage alerts and reduce meaningless integrating open-source software
Knowledge Sharing within Teams and non-actionable alerts Inspect open-source software packages
Modernizing Development Environments Carry out blameless retrospectives and for security and license compliance
with Codespaces create a just culture Manage organizational security and

Define an infrastructure and configuration compliance policies
Lab : Sharing Team Knowledge using Azure strategy and appropriate toolset for a Integrate license and vulnerability scans
Project Wikis release pipeline and application into build and deployment pipelines
line infrastructure Configure build pipelines to access

Implement compliance and security in package security and license ratings
After completing this module, students will be your application infrastructure
able to: Describe the potential challenges with Module 16: Creating and Managing
line integrating open-source software Kubernetes Service Infrastructure

Plan for the transformation with shared Inspect open-source software packages line
goals and timelines for security and license compliance Azure Kubernetes Service
Select a project and identify project metrics Manage organizational security and Kubernetes Tooling
and Key Performance Indicators (KPI's) compliance policies Integrating AKS with Pipelines
Create a team and agile organizational Integrate license and vulnerability scans
structure into build and deployment pipelines Lab : Deploying a Multi-Container Application
Design a tool integration strategy Configure build pipelines to access to Azure Kubernetes Service
Design a license management strategy (e.g. package security and license ratings line
Azure DevOps and GitHub users)
Design a strategy for end-to-end traceability Module 10: Designing a Release Strategy After completing this module, students will be

M-AZ400 www.globalknowledge.com/en-be/ info@globalknowledge.be 0800/84.009

from work items to working software line able to:
Design an authentication and access Introduction to Continuous Delivery line
strategy Release Strategy Recommendations Plan for the transformation with shared
Design a strategy for integrating Building a High-Quality Release pipeline goals and timelines
on-premises and cloud resources Choosing the Right Release Select a project and identify project
Describe the benefits of using Source Management Tool metrics and Key Performance Indicators
Control (KPI's)
Describe Azure Repos and GitHub Lab : Controlling Deployments using Release Create a team and agile organizational
Migrate from TFVC to Git Gates structure
Manage code quality including technical line Design a tool integration strategy
debt SonarCloud, and other tooling solutions Design a license management strategy
Build organizational knowledge on code Lab : Creating a Release Dashboard (e.g. Azure DevOps and GitHub users)
quality line Design a strategy for end-to-end
Explain how to structure Git repos traceability from work items to working
Describe Git branching workflows After completing this module, students will be software
Leverage pull requests for collaboration and able to: Design an authentication and access
code reviews line strategy
Leverage Git hooks for automation Plan for the transformation with shared Design a strategy for integrating
Use Git to foster inner source across the goals and timelines on-premises and cloud resources
organization Select a project and identify project Describe the benefits of using Source
Explain the role of Azure Pipelines and its metrics and Key Performance Indicators Control
components (KPI's) Describe Azure Repos and GitHub
Configure Agents for use in Azure Pipelines Create a team and agile organizational Migrate from TFVC to Git
Explain why continuous integration matters structure Manage code quality including technical
Implement continuous integration using Design a tool integration strategy debt SonarCloud, and other tooling
Azure Pipelines Design a license management strategy solutions
Manage application configuration and (e.g. Azure DevOps and GitHub users) Build organizational knowledge on code
secrets Design a strategy for end-to-end quality
Integrate Azure Key Vault with a pipeline traceability from work items to working Explain how to structure Git repos
Create and work with GitHub Actions and software Describe Git branching workflows
Workflows Design an authentication and access Leverage pull requests for collaboration
Implement Continuous Integration with strategy and code reviews
GitHub Actions Design a strategy for integrating Leverage Git hooks for automation
Recommend artifact management tools and on-premises and cloud resources Use Git to foster inner source across the
practices Describe the benefits of using Source organization
Abstract common packages to enable Control Explain the role of Azure Pipelines and its
sharing and reuse Describe Azure Repos and GitHub components
Migrate and consolidate artifacts Migrate from TFVC to Git Configure Agents for use in Azure
Migrate and integrate source control Manage code quality including technical Pipelines
measures debt SonarCloud, and other tooling Explain why continuous integration matters
Differentiate between a release and a solutions Implement continuous integration using
deployment Build organizational knowledge on code Azure Pipelines
Define the components of a release pipeline quality Manage application configuration and
Explain things to consider when designing Explain how to structure Git repos secrets
your release strategy Describe Git branching workflows Integrate Azure Key Vault with a pipeline
Classify a release versus a release process, Leverage pull requests for collaboration Create and work with GitHub Actions and
and outline how to control the quality of both and code reviews Workflows
Describe the principle of release gates and Leverage Git hooks for automation Implement Continuous Integration with
how to deal with release notes and Use Git to foster inner source across the GitHub Actions
documentation organization Recommend artifact management tools
Choose a release management tool Explain the role of Azure Pipelines and its and practices
Explain the terminology used in Azure components Abstract common packages to enable
DevOps and other Release Management Configure Agents for use in Azure sharing and reuse
Tooling Pipelines Migrate and consolidate artifacts
Describe what a Build and Release task is, Explain why continuous integration Migrate and integrate source control
what it can do, and some available matters measures
deployment tasks Implement continuous integration using Differentiate between a release and a
Explain why you sometimes need multiple Azure Pipelines deployment
release jobs in one release pipeline Manage application configuration and Define the components of a release
Differentiate between multi-agent and secrets pipeline
multi-configuration release job Integrate Azure Key Vault with a pipeline Explain things to consider when designing
Use release variables and stage variables in Create and work with GitHub Actions and your release strategy
your release pipeline Workflows Classify a release versus a release
Deploy to an environment securely using a Implement Continuous Integration with process, and outline how to control the
service connection GitHub Actions quality of both

M-AZ400 www.globalknowledge.com/en-be/ info@globalknowledge.be 0800/84.009

List the different ways to inspect the health Recommend artifact management tools Describe the principle of release gates and
of your pipeline and release by using alerts, and practices how to deal with release notes and
service hooks, and reports Abstract common packages to enable documentation
Describe deployment patterns sharing and reuse Choose a release management tool
Implement Blue Green Deployment Migrate and consolidate artifacts Explain the terminology used in Azure
Implement Canary Release Migrate and integrate source control DevOps and other Release Management
Implement Progressive Exposure measures Tooling
Deployment Differentiate between a release and a Describe what a Build and Release task is,
Apply infrastructure and configuration as deployment what it can do, and some available
code principles. Define the components of a release deployment tasks
Deploy and manage infrastructure using pipeline Explain why you sometimes need multiple
Microsoft automation technologies such as Explain things to consider when release jobs in one release pipeline
ARM templates, PowerShell, and Azure CLI designing your release strategy Differentiate between multi-agent and
Deploy and configure infrastructure using Classify a release versus a release multi-configuration release job
3rd party tools and services with Azure, such process, and outline how to control the Use release variables and stage variables
as Chef, Puppet, Ansible, and Terraform quality of both in your release pipeline
Implement a container strategy including Describe the principle of release gates Deploy to an environment securely using a
how containers are different from virtual and how to deal with release notes and service connection
machines and how microservices use documentation List the different ways to inspect the health
containers Choose a release management tool of your pipeline and release by using
Implement containers using Docker Explain the terminology used in Azure alerts, service hooks, and reports
Implement Docker multi-stage builds DevOps and other Release Management Describe deployment patterns
Deploy and configure a Managed Tooling Implement Blue Green Deployment
Kubernetes cluster Describe what a Build and Release task Implement Canary Release
Implement tools to track system usage, is, what it can do, and some available Implement Progressive Exposure
feature usage, and flow deployment tasks Deployment
Configure crash report integration for client Explain why you sometimes need Apply infrastructure and configuration as
applications multiple release jobs in one release code principles.
Implement routing for client application pipeline Deploy and manage infrastructure using
crash report data Differentiate between multi-agent and Microsoft automation technologies such as
Develop monitoring and status dashboards multi-configuration release job ARM templates, PowerShell, and Azure
Integrate and configure ticketing systems Use release variables and stage CLI
with development team's work management variables in your release pipeline Deploy and configure infrastructure using
Define Site Reliability Engineering Deploy to an environment securely using 3rd party tools and services with Azure,
Design processes to measure end-user a service connection such as Chef, Puppet, Ansible, and
satisfaction and analyze user feedback List the different ways to inspect the Terraform
Design processes to automate application health of your pipeline and release by Implement a container strategy including
analytics using alerts, service hooks, and reports how containers are different from virtual
Manage alerts and reduce meaningless and Describe deployment patterns machines and how microservices use
non-actionable alerts Implement Blue Green Deployment containers
Carry out blameless retrospectives and Implement Canary Release Implement containers using Docker
create a just culture Implement Progressive Exposure Implement Docker multi-stage builds
Define an infrastructure and configuration Deployment Deploy and configure a Managed
strategy and appropriate toolset for a Apply infrastructure and configuration as Kubernetes cluster
release pipeline and application code principles. Implement tools to track system usage,
infrastructure Deploy and manage infrastructure using feature usage, and flow
Implement compliance and security in your Microsoft automation technologies such Configure crash report integration for client
application infrastructure as ARM templates, PowerShell, and applications
Describe the potential challenges with Azure CLI Implement routing for client application
integrating open-source software Deploy and configure infrastructure using crash report data
Inspect open-source software packages for 3rd party tools and services with Azure, Develop monitoring and status dashboards
security and license compliance such as Chef, Puppet, Ansible, and Integrate and configure ticketing systems
Manage organizational security and Terraform with development team's work
compliance policies Implement a container strategy including management
Integrate license and vulnerability scans into how containers are different from virtual Define Site Reliability Engineering
build and deployment pipelines machines and how microservices use Design processes to measure end-user
Configure build pipelines to access package containers satisfaction and analyze user feedback
security and license ratings Implement containers using Docker Design processes to automate application

Implement Docker multi-stage builds analytics
Module 4: Working with Git for Enterprise Deploy and configure a Managed Manage alerts and reduce meaningless
DevOps Kubernetes cluster and non-actionable alerts
line Implement tools to track system usage, Carry out blameless retrospectives and

How to Structure Your Git Repo feature usage, and flow create a just culture
Git Branching Workflows Configure crash report integration for Define an infrastructure and configuration
Collaborating with Pull Requests in Azure client applications strategy and appropriate toolset for a

M-AZ400 www.globalknowledge.com/en-be/ info@globalknowledge.be 0800/84.009

Repos Implement routing for client application release pipeline and application
Why Care About Git Hooks crash report data infrastructure
Fostering Inner Source Develop monitoring and status Implement compliance and security in your
Managing Git Repositories dashboards application infrastructure

Integrate and configure ticketing systems Describe the potential challenges with
Lab : Version Controlling with Git in Azure with development team's work integrating open-source software
Repos management Inspect open-source software packages
line Define Site Reliability Engineering for security and license compliance

Design processes to measure end-user Manage organizational security and
After completing this module, students will be satisfaction and analyze user feedback compliance policies
able to: Design processes to automate Integrate license and vulnerability scans
line application analytics into build and deployment pipelines

Plan for the transformation with shared Manage alerts and reduce meaningless Configure build pipelines to access
goals and timelines and non-actionable alerts package security and license ratings
Select a project and identify project metrics Carry out blameless retrospectives and
and Key Performance Indicators (KPI's) create a just culture Module 17: Implementing Feedback for
Create a team and agile organizational Define an infrastructure and configuration Development Teams
structure strategy and appropriate toolset for a line
Design a tool integration strategy release pipeline and application Implement Tools to Track System Usage,
Design a license management strategy (e.g. infrastructure Feature Usage, and Flow
Azure DevOps and GitHub users) Implement compliance and security in Implement Routing for Mobile Application
Design a strategy for end-to-end traceability your application infrastructure Crash Report Data
from work items to working software Describe the potential challenges with Develop Monitoring and Status
Design an authentication and access integrating open-source software Dashboards
strategy Inspect open-source software packages Integrate and Configure Ticketing Systems
Design a strategy for integrating for security and license compliance
on-premises and cloud resources Manage organizational security and Lab : Monitoring Application Performance with
Describe the benefits of using Source compliance policies Application Insights
Control Integrate license and vulnerability scans line
Describe Azure Repos and GitHub into build and deployment pipelines
Migrate from TFVC to Git Configure build pipelines to access After completing this module, students will be
Manage code quality including technical package security and license ratings able to:
debt SonarCloud, and other tooling solutions line
Build organizational knowledge on code Module 11: Implementing Continuous Plan for the transformation with shared
quality Deployment using Azure Pipelines goals and timelines
Explain how to structure Git repos line Select a project and identify project
Describe Git branching workflows Create a Release Pipeline metrics and Key Performance Indicators
Leverage pull requests for collaboration and Provision and Configure Environments (KPI's)
code reviews Manage and Modularize Tasks and Create a team and agile organizational
Leverage Git hooks for automation Templates structure
Use Git to foster inner source across the Configure Automated Integration and Design a tool integration strategy
organization Functional Test Automation Design a license management strategy
Explain the role of Azure Pipelines and its Automate Inspection of Health (e.g. Azure DevOps and GitHub users)
components Design a strategy for end-to-end
Configure Agents for use in Azure Pipelines Lab : Configuring Pipelines as Code with traceability from work items to working
Explain why continuous integration matters YAML software
Implement continuous integration using line Design an authentication and access
Azure Pipelines strategy
Manage application configuration and Lab : Setting up and Running Functional Design a strategy for integrating
secrets Tests on-premises and cloud resources
Integrate Azure Key Vault with a pipeline line Describe the benefits of using Source
Create and work with GitHub Actions and Control
Workflows After completing this module, students will be Describe Azure Repos and GitHub
Implement Continuous Integration with able to: Migrate from TFVC to Git
GitHub Actions line Manage code quality including technical
Recommend artifact management tools and Plan for the transformation with shared debt SonarCloud, and other tooling
practices goals and timelines solutions
Abstract common packages to enable Select a project and identify project Build organizational knowledge on code
sharing and reuse metrics and Key Performance Indicators quality
Migrate and consolidate artifacts (KPI's) Explain how to structure Git repos
Migrate and integrate source control Create a team and agile organizational Describe Git branching workflows
measures structure Leverage pull requests for collaboration
Differentiate between a release and a Design a tool integration strategy and code reviews
deployment Design a license management strategy Leverage Git hooks for automation
Define the components of a release pipeline (e.g. Azure DevOps and GitHub users) Use Git to foster inner source across the

M-AZ400 www.globalknowledge.com/en-be/ info@globalknowledge.be 0800/84.009

Explain things to consider when designing Design a strategy for end-to-end organization
your release strategy traceability from work items to working Explain the role of Azure Pipelines and its
Classify a release versus a release process, software components
and outline how to control the quality of both Design an authentication and access Configure Agents for use in Azure
Describe the principle of release gates and strategy Pipelines
how to deal with release notes and Design a strategy for integrating Explain why continuous integration matters
documentation on-premises and cloud resources Implement continuous integration using
Choose a release management tool Describe the benefits of using Source Azure Pipelines
Explain the terminology used in Azure Control Manage application configuration and
DevOps and other Release Management Describe Azure Repos and GitHub secrets
Tooling Migrate from TFVC to Git Integrate Azure Key Vault with a pipeline
Describe what a Build and Release task is, Manage code quality including technical Create and work with GitHub Actions and
what it can do, and some available debt SonarCloud, and other tooling Workflows
deployment tasks solutions Implement Continuous Integration with
Explain why you sometimes need multiple Build organizational knowledge on code GitHub Actions
release jobs in one release pipeline quality Recommend artifact management tools
Differentiate between multi-agent and Explain how to structure Git repos and practices
multi-configuration release job Describe Git branching workflows Abstract common packages to enable
Use release variables and stage variables in Leverage pull requests for collaboration sharing and reuse
your release pipeline and code reviews Migrate and consolidate artifacts
Deploy to an environment securely using a Leverage Git hooks for automation Migrate and integrate source control
service connection Use Git to foster inner source across the measures
List the different ways to inspect the health organization Differentiate between a release and a
of your pipeline and release by using alerts, Explain the role of Azure Pipelines and its deployment
service hooks, and reports components Define the components of a release
Describe deployment patterns Configure Agents for use in Azure pipeline
Implement Blue Green Deployment Pipelines Explain things to consider when designing
Implement Canary Release Explain why continuous integration your release strategy
Implement Progressive Exposure matters Classify a release versus a release
Deployment Implement continuous integration using process, and outline how to control the
Apply infrastructure and configuration as Azure Pipelines quality of both
code principles. Manage application configuration and Describe the principle of release gates and
Deploy and manage infrastructure using secrets how to deal with release notes and
Microsoft automation technologies such as Integrate Azure Key Vault with a pipeline documentation
ARM templates, PowerShell, and Azure CLI Create and work with GitHub Actions and Choose a release management tool
Deploy and configure infrastructure using Workflows Explain the terminology used in Azure
3rd party tools and services with Azure, such Implement Continuous Integration with DevOps and other Release Management
as Chef, Puppet, Ansible, and Terraform GitHub Actions Tooling
Implement a container strategy including Recommend artifact management tools Describe what a Build and Release task is,
how containers are different from virtual and practices what it can do, and some available
machines and how microservices use Abstract common packages to enable deployment tasks
containers sharing and reuse Explain why you sometimes need multiple
Implement containers using Docker Migrate and consolidate artifacts release jobs in one release pipeline
Implement Docker multi-stage builds Migrate and integrate source control Differentiate between multi-agent and
Deploy and configure a Managed measures multi-configuration release job
Kubernetes cluster Differentiate between a release and a Use release variables and stage variables
Implement tools to track system usage, deployment in your release pipeline
feature usage, and flow Define the components of a release Deploy to an environment securely using a
Configure crash report integration for client pipeline service connection
applications Explain things to consider when List the different ways to inspect the health
Implement routing for client application designing your release strategy of your pipeline and release by using
crash report data Classify a release versus a release alerts, service hooks, and reports
Develop monitoring and status dashboards process, and outline how to control the Describe deployment patterns
Integrate and configure ticketing systems quality of both Implement Blue Green Deployment
with development team's work management Describe the principle of release gates Implement Canary Release
Define Site Reliability Engineering and how to deal with release notes and Implement Progressive Exposure
Design processes to measure end-user documentation Deployment
satisfaction and analyze user feedback Choose a release management tool Apply infrastructure and configuration as
Design processes to automate application Explain the terminology used in Azure code principles.
analytics DevOps and other Release Management Deploy and manage infrastructure using
Manage alerts and reduce meaningless and Tooling Microsoft automation technologies such as
non-actionable alerts Describe what a Build and Release task ARM templates, PowerShell, and Azure
Carry out blameless retrospectives and is, what it can do, and some available CLI
create a just culture deployment tasks Deploy and configure infrastructure using
Define an infrastructure and configuration Explain why you sometimes need 3rd party tools and services with Azure,

M-AZ400 www.globalknowledge.com/en-be/ info@globalknowledge.be 0800/84.009

strategy and appropriate toolset for a multiple release jobs in one release such as Chef, Puppet, Ansible, and
release pipeline and application pipeline Terraform
infrastructure Differentiate between multi-agent and Implement a container strategy including
Implement compliance and security in your multi-configuration release job how containers are different from virtual
application infrastructure Use release variables and stage machines and how microservices use
Describe the potential challenges with variables in your release pipeline containers
integrating open-source software Deploy to an environment securely using Implement containers using Docker
Inspect open-source software packages for a service connection Implement Docker multi-stage builds
security and license compliance List the different ways to inspect the Deploy and configure a Managed
Manage organizational security and health of your pipeline and release by Kubernetes cluster
compliance policies using alerts, service hooks, and reports Implement tools to track system usage,
Integrate license and vulnerability scans into Describe deployment patterns feature usage, and flow
build and deployment pipelines Implement Blue Green Deployment Configure crash report integration for client
Configure build pipelines to access package Implement Canary Release applications
security and license ratings Implement Progressive Exposure Implement routing for client application

Deployment crash report data
Module 5: Configuring Azure Pipelines Apply infrastructure and configuration as Develop monitoring and status dashboards
line code principles. Integrate and configure ticketing systems

The Concept of Pipelines in DevOps Deploy and manage infrastructure using with development team's work
Azure Pipelines Microsoft automation technologies such management
Evaluate use of Hosted versus Self-Hosted as ARM templates, PowerShell, and Define Site Reliability Engineering
Agents Azure CLI Design processes to measure end-user
Agent Pools Deploy and configure infrastructure using satisfaction and analyze user feedback
Pipelines and Concurrency 3rd party tools and services with Azure, Design processes to automate application
Azure DevOps and Open-Source Projects such as Chef, Puppet, Ansible, and analytics
(Public Projects) Terraform Manage alerts and reduce meaningless
Azure Pipelines YAML versus Visual Implement a container strategy including and non-actionable alerts
Designer how containers are different from virtual Carry out blameless retrospectives and

machines and how microservices use create a just culture
Lab : Configuring Agent Pools and containers Define an infrastructure and configuration
Understanding Pipeline Styles Implement containers using Docker strategy and appropriate toolset for a
line Implement Docker multi-stage builds release pipeline and application

Deploy and configure a Managed infrastructure
After completing this module, students will be Kubernetes cluster Implement compliance and security in your
able to: Implement tools to track system usage, application infrastructure
line feature usage, and flow Describe the potential challenges with

Plan for the transformation with shared Configure crash report integration for integrating open-source software
goals and timelines client applications Inspect open-source software packages
Select a project and identify project metrics Implement routing for client application for security and license compliance
and Key Performance Indicators (KPI's) crash report data Manage organizational security and
Create a team and agile organizational Develop monitoring and status compliance policies
structure dashboards Integrate license and vulnerability scans
Design a tool integration strategy Integrate and configure ticketing systems into build and deployment pipelines
Design a license management strategy (e.g. with development team's work Configure build pipelines to access
Azure DevOps and GitHub users) management package security and license ratings
Design a strategy for end-to-end traceability Define Site Reliability Engineering
from work items to working software Design processes to measure end-user Module 18: Implementing System Feedback
Design an authentication and access satisfaction and analyze user feedback Mechanisms
strategy Design processes to automate line
Design a strategy for integrating application analytics Site Reliability Engineering
on-premises and cloud resources Manage alerts and reduce meaningless Design Practices to Measure End-User
Describe the benefits of using Source and non-actionable alerts Satisfaction
Control Carry out blameless retrospectives and Design Processes to Capture and Analyze
Describe Azure Repos and GitHub create a just culture User Feedback
Migrate from TFVC to Git Define an infrastructure and configuration Design Processes to Automate Application
Manage code quality including technical strategy and appropriate toolset for a Analytics
debt SonarCloud, and other tooling solutions release pipeline and application Managing Alerts
Build organizational knowledge on code infrastructure Blameless Retrospectives and a Just
quality Implement compliance and security in Culture
Explain how to structure Git repos your application infrastructure
Describe Git branching workflows Describe the potential challenges with Lab : Integration between Azure DevOps and
Leverage pull requests for collaboration and integrating open-source software Teams
code reviews Inspect open-source software packages line
Leverage Git hooks for automation for security and license compliance
Use Git to foster inner source across the Manage organizational security and After completing this module, students will be

M-AZ400 www.globalknowledge.com/en-be/ info@globalknowledge.be 0800/84.009

organization compliance policies able to:
Explain the role of Azure Pipelines and its Integrate license and vulnerability scans line
components into build and deployment pipelines Plan for the transformation with shared
Configure Agents for use in Azure Pipelines Configure build pipelines to access goals and timelines
Explain why continuous integration matters package security and license ratings Select a project and identify project
Implement continuous integration using metrics and Key Performance Indicators
Azure Pipelines Module 12: Implementing an Appropriate (KPI's)
Manage application configuration and Deployment Pattern Create a team and agile organizational
secrets line structure
Integrate Azure Key Vault with a pipeline Introduction to Deployment Patterns Design a tool integration strategy
Create and work with GitHub Actions and Implement Blue Green Deployment Design a license management strategy
Workflows Feature Toggles (e.g. Azure DevOps and GitHub users)
Implement Continuous Integration with Canary Releases Design a strategy for end-to-end
GitHub Actions Dark Launching traceability from work items to working
Recommend artifact management tools and AB Testing software
practices Progressive Exposure Deployment Design an authentication and access
Abstract common packages to enable strategy
sharing and reuse Lab : Feature Flag Management with Design a strategy for integrating
Migrate and consolidate artifacts LaunchDarkly and Azure DevOps on-premises and cloud resources
Migrate and integrate source control line Describe the benefits of using Source
measures Control
Differentiate between a release and a After completing this module, students will be Describe Azure Repos and GitHub
deployment able to: Migrate from TFVC to Git
Define the components of a release pipeline line Manage code quality including technical
Explain things to consider when designing Plan for the transformation with shared debt SonarCloud, and other tooling
your release strategy goals and timelines solutions
Classify a release versus a release process, Select a project and identify project Build organizational knowledge on code
and outline how to control the quality of both metrics and Key Performance Indicators quality
Describe the principle of release gates and (KPI's) Explain how to structure Git repos
how to deal with release notes and Create a team and agile organizational Describe Git branching workflows
documentation structure Leverage pull requests for collaboration
Choose a release management tool Design a tool integration strategy and code reviews
Explain the terminology used in Azure Design a license management strategy Leverage Git hooks for automation
DevOps and other Release Management (e.g. Azure DevOps and GitHub users) Use Git to foster inner source across the
Tooling Design a strategy for end-to-end organization
Describe what a Build and Release task is, traceability from work items to working Explain the role of Azure Pipelines and its
what it can do, and some available software components
deployment tasks Design an authentication and access Configure Agents for use in Azure
Explain why you sometimes need multiple strategy Pipelines
release jobs in one release pipeline Design a strategy for integrating Explain why continuous integration matters
Differentiate between multi-agent and on-premises and cloud resources Implement continuous integration using
multi-configuration release job Describe the benefits of using Source Azure Pipelines
Use release variables and stage variables in Control Manage application configuration and
your release pipeline Describe Azure Repos and GitHub secrets
Deploy to an environment securely using a Migrate from TFVC to Git Integrate Azure Key Vault with a pipeline
service connection Manage code quality including technical Create and work with GitHub Actions and
List the different ways to inspect the health debt SonarCloud, and other tooling Workflows
of your pipeline and release by using alerts, solutions Implement Continuous Integration with
service hooks, and reports Build organizational knowledge on code GitHub Actions
Describe deployment patterns quality Recommend artifact management tools
Implement Blue Green Deployment Explain how to structure Git repos and practices
Implement Canary Release Describe Git branching workflows Abstract common packages to enable
Implement Progressive Exposure Leverage pull requests for collaboration sharing and reuse
Deployment and code reviews Migrate and consolidate artifacts
Apply infrastructure and configuration as Leverage Git hooks for automation Migrate and integrate source control
code principles. Use Git to foster inner source across the measures
Deploy and manage infrastructure using organization Differentiate between a release and a
Microsoft automation technologies such as Explain the role of Azure Pipelines and its deployment
ARM templates, PowerShell, and Azure CLI components Define the components of a release
Deploy and configure infrastructure using Configure Agents for use in Azure pipeline
3rd party tools and services with Azure, such Pipelines Explain things to consider when designing
as Chef, Puppet, Ansible, and Terraform Explain why continuous integration your release strategy
Implement a container strategy including matters Classify a release versus a release
how containers are different from virtual Implement continuous integration using process, and outline how to control the
machines and how microservices use Azure Pipelines quality of both

M-AZ400 www.globalknowledge.com/en-be/ info@globalknowledge.be 0800/84.009

containers Manage application configuration and Describe the principle of release gates and
Implement containers using Docker secrets how to deal with release notes and
Implement Docker multi-stage builds Integrate Azure Key Vault with a pipeline documentation
Deploy and configure a Managed Create and work with GitHub Actions and Choose a release management tool
Kubernetes cluster Workflows Explain the terminology used in Azure
Implement tools to track system usage, Implement Continuous Integration with DevOps and other Release Management
feature usage, and flow GitHub Actions Tooling
Configure crash report integration for client Recommend artifact management tools Describe what a Build and Release task is,
applications and practices what it can do, and some available
Implement routing for client application Abstract common packages to enable deployment tasks
crash report data sharing and reuse Explain why you sometimes need multiple
Develop monitoring and status dashboards Migrate and consolidate artifacts release jobs in one release pipeline
Integrate and configure ticketing systems Migrate and integrate source control Differentiate between multi-agent and
with development team's work management measures multi-configuration release job
Define Site Reliability Engineering Differentiate between a release and a Use release variables and stage variables
Design processes to measure end-user deployment in your release pipeline
satisfaction and analyze user feedback Define the components of a release Deploy to an environment securely using a
Design processes to automate application pipeline service connection
analytics Explain things to consider when List the different ways to inspect the health
Manage alerts and reduce meaningless and designing your release strategy of your pipeline and release by using
non-actionable alerts Classify a release versus a release alerts, service hooks, and reports
Carry out blameless retrospectives and process, and outline how to control the Describe deployment patterns
create a just culture quality of both Implement Blue Green Deployment
Define an infrastructure and configuration Describe the principle of release gates Implement Canary Release
strategy and appropriate toolset for a and how to deal with release notes and Implement Progressive Exposure
release pipeline and application documentation Deployment
infrastructure Choose a release management tool Apply infrastructure and configuration as
Implement compliance and security in your Explain the terminology used in Azure code principles.
application infrastructure DevOps and other Release Management Deploy and manage infrastructure using
Describe the potential challenges with Tooling Microsoft automation technologies such as
integrating open-source software Describe what a Build and Release task ARM templates, PowerShell, and Azure
Inspect open-source software packages for is, what it can do, and some available CLI
security and license compliance deployment tasks Deploy and configure infrastructure using
Manage organizational security and Explain why you sometimes need 3rd party tools and services with Azure,
compliance policies multiple release jobs in one release such as Chef, Puppet, Ansible, and
Integrate license and vulnerability scans into pipeline Terraform
build and deployment pipelines Differentiate between multi-agent and Implement a container strategy including
Configure build pipelines to access package multi-configuration release job how containers are different from virtual
security and license ratings Use release variables and stage machines and how microservices use

variables in your release pipeline containers
Module 6: Implementing Continuous Integration Deploy to an environment securely using Implement containers using Docker
using Azure Pipelines a service connection Implement Docker multi-stage builds
line List the different ways to inspect the Deploy and configure a Managed

Continuous Integration Overview health of your pipeline and release by Kubernetes cluster
Implementing a Build Strategy using alerts, service hooks, and reports Implement tools to track system usage,
Integration with Azure Pipelines Describe deployment patterns feature usage, and flow
Integrating External Source Control with Implement Blue Green Deployment Configure crash report integration for client
Azure Pipelines Implement Canary Release applications
Set Up Self-Hosted Agents Implement Progressive Exposure Implement routing for client application

Deployment crash report data
Lab : Enabling Continuous Integration with Apply infrastructure and configuration as Develop monitoring and status dashboards
Azure Pipelines code principles. Integrate and configure ticketing systems
line Deploy and manage infrastructure using with development team's work

Microsoft automation technologies such management
Lab : Integrating External Source Control with as ARM templates, PowerShell, and Define Site Reliability Engineering
Azure Pipelines Azure CLI Design processes to measure end-user
line Deploy and configure infrastructure using satisfaction and analyze user feedback

3rd party tools and services with Azure, Design processes to automate application
After completing this module, students will be such as Chef, Puppet, Ansible, and analytics
able to: Terraform Manage alerts and reduce meaningless
line Implement a container strategy including and non-actionable alerts

Plan for the transformation with shared how containers are different from virtual Carry out blameless retrospectives and
goals and timelines machines and how microservices use create a just culture
Select a project and identify project metrics containers Define an infrastructure and configuration
and Key Performance Indicators (KPI's) Implement containers using Docker strategy and appropriate toolset for a

M-AZ400 www.globalknowledge.com/en-be/ info@globalknowledge.be 0800/84.009

Create a team and agile organizational Implement Docker multi-stage builds release pipeline and application
structure Deploy and configure a Managed infrastructure
Design a tool integration strategy Kubernetes cluster Implement compliance and security in your
Design a license management strategy (e.g. Implement tools to track system usage, application infrastructure
Azure DevOps and GitHub users) feature usage, and flow Describe the potential challenges with
Design a strategy for end-to-end traceability Configure crash report integration for integrating open-source software
from work items to working software client applications Inspect open-source software packages
Design an authentication and access Implement routing for client application for security and license compliance
strategy crash report data Manage organizational security and
Design a strategy for integrating Develop monitoring and status compliance policies
on-premises and cloud resources dashboards Integrate license and vulnerability scans
Describe the benefits of using Source Integrate and configure ticketing systems into build and deployment pipelines
Control with development team's work Configure build pipelines to access
Describe Azure Repos and GitHub management package security and license ratings
Migrate from TFVC to Git Define Site Reliability Engineering
Manage code quality including technical Design processes to measure end-user Module 19: Implementing Security in DevOps
debt SonarCloud, and other tooling solutions satisfaction and analyze user feedback Projects
Build organizational knowledge on code Design processes to automate line
quality application analytics Security in the Pipeline
Explain how to structure Git repos Manage alerts and reduce meaningless Azure Security Center
Describe Git branching workflows and non-actionable alerts
Leverage pull requests for collaboration and Carry out blameless retrospectives and Lab : Implement Security and Compliance in
code reviews create a just culture an Azure DevOps Pipeline
Leverage Git hooks for automation Define an infrastructure and configuration line
Use Git to foster inner source across the strategy and appropriate toolset for a
organization release pipeline and application After completing this module, students will be
Explain the role of Azure Pipelines and its infrastructure able to:
components Implement compliance and security in line
Configure Agents for use in Azure Pipelines your application infrastructure Plan for the transformation with shared
Explain why continuous integration matters Describe the potential challenges with goals and timelines
Implement continuous integration using integrating open-source software Select a project and identify project
Azure Pipelines Inspect open-source software packages metrics and Key Performance Indicators
Manage application configuration and for security and license compliance (KPI's)
secrets Manage organizational security and Create a team and agile organizational
Integrate Azure Key Vault with a pipeline compliance policies structure
Create and work with GitHub Actions and Integrate license and vulnerability scans Design a tool integration strategy
Workflows into build and deployment pipelines Design a license management strategy
Implement Continuous Integration with Configure build pipelines to access (e.g. Azure DevOps and GitHub users)
GitHub Actions package security and license ratings Design a strategy for end-to-end
Recommend artifact management tools and traceability from work items to working
practices Module 13: Managing Infrastructure and software
Abstract common packages to enable Configuration using Azure Tools Design an authentication and access
sharing and reuse line strategy
Migrate and consolidate artifacts Infrastructure as Code and Configuration Design a strategy for integrating
Migrate and integrate source control Management on-premises and cloud resources
measures Create Azure Resources using ARM Describe the benefits of using Source
Differentiate between a release and a Templates Control
deployment Create Azure Resources using Azure CLI Describe Azure Repos and GitHub
Define the components of a release pipeline Azure Automation with DevOps Migrate from TFVC to Git
Explain things to consider when designing Desired State Configuration (DSC) Manage code quality including technical
your release strategy debt SonarCloud, and other tooling
Classify a release versus a release process, Lab : Azure Deployments using Resource solutions
and outline how to control the quality of both Manager Templates Build organizational knowledge on code
Describe the principle of release gates and line quality
how to deal with release notes and Explain how to structure Git repos
documentation After completing this module, students will be Describe Git branching workflows
Choose a release management tool able to: Leverage pull requests for collaboration
Explain the terminology used in Azure line and code reviews
DevOps and other Release Management Plan for the transformation with shared Leverage Git hooks for automation
Tooling goals and timelines Use Git to foster inner source across the
Describe what a Build and Release task is, Select a project and identify project organization
what it can do, and some available metrics and Key Performance Indicators Explain the role of Azure Pipelines and its
deployment tasks (KPI's) components
Explain why you sometimes need multiple Create a team and agile organizational Configure Agents for use in Azure
release jobs in one release pipeline structure Pipelines

M-AZ400 www.globalknowledge.com/en-be/ info@globalknowledge.be 0800/84.009

Differentiate between multi-agent and Design a tool integration strategy Explain why continuous integration matters
multi-configuration release job Design a license management strategy Implement continuous integration using
Use release variables and stage variables in (e.g. Azure DevOps and GitHub users) Azure Pipelines
your release pipeline Design a strategy for end-to-end Manage application configuration and
Deploy to an environment securely using a traceability from work items to working secrets
service connection software Integrate Azure Key Vault with a pipeline
List the different ways to inspect the health Design an authentication and access Create and work with GitHub Actions and
of your pipeline and release by using alerts, strategy Workflows
service hooks, and reports Design a strategy for integrating Implement Continuous Integration with
Describe deployment patterns on-premises and cloud resources GitHub Actions
Implement Blue Green Deployment Describe the benefits of using Source Recommend artifact management tools
Implement Canary Release Control and practices
Implement Progressive Exposure Describe Azure Repos and GitHub Abstract common packages to enable
Deployment Migrate from TFVC to Git sharing and reuse
Apply infrastructure and configuration as Manage code quality including technical Migrate and consolidate artifacts
code principles. debt SonarCloud, and other tooling Migrate and integrate source control
Deploy and manage infrastructure using solutions measures
Microsoft automation technologies such as Build organizational knowledge on code Differentiate between a release and a
ARM templates, PowerShell, and Azure CLI quality deployment
Deploy and configure infrastructure using Explain how to structure Git repos Define the components of a release
3rd party tools and services with Azure, such Describe Git branching workflows pipeline
as Chef, Puppet, Ansible, and Terraform Leverage pull requests for collaboration Explain things to consider when designing
Implement a container strategy including and code reviews your release strategy
how containers are different from virtual Leverage Git hooks for automation Classify a release versus a release
machines and how microservices use Use Git to foster inner source across the process, and outline how to control the
containers organization quality of both
Implement containers using Docker Explain the role of Azure Pipelines and its Describe the principle of release gates and
Implement Docker multi-stage builds components how to deal with release notes and
Deploy and configure a Managed Configure Agents for use in Azure documentation
Kubernetes cluster Pipelines Choose a release management tool
Implement tools to track system usage, Explain why continuous integration Explain the terminology used in Azure
feature usage, and flow matters DevOps and other Release Management
Configure crash report integration for client Implement continuous integration using Tooling
applications Azure Pipelines Describe what a Build and Release task is,
Implement routing for client application Manage application configuration and what it can do, and some available
crash report data secrets deployment tasks
Develop monitoring and status dashboards Integrate Azure Key Vault with a pipeline Explain why you sometimes need multiple
Integrate and configure ticketing systems Create and work with GitHub Actions and release jobs in one release pipeline
with development team's work management Workflows Differentiate between multi-agent and
Define Site Reliability Engineering Implement Continuous Integration with multi-configuration release job
Design processes to measure end-user GitHub Actions Use release variables and stage variables
satisfaction and analyze user feedback Recommend artifact management tools in your release pipeline
Design processes to automate application and practices Deploy to an environment securely using a
analytics Abstract common packages to enable service connection
Manage alerts and reduce meaningless and sharing and reuse List the different ways to inspect the health
non-actionable alerts Migrate and consolidate artifacts of your pipeline and release by using
Carry out blameless retrospectives and Migrate and integrate source control alerts, service hooks, and reports
create a just culture measures Describe deployment patterns
Define an infrastructure and configuration Differentiate between a release and a Implement Blue Green Deployment
strategy and appropriate toolset for a deployment Implement Canary Release
release pipeline and application Define the components of a release Implement Progressive Exposure
infrastructure pipeline Deployment
Implement compliance and security in your Explain things to consider when Apply infrastructure and configuration as
application infrastructure designing your release strategy code principles.
Describe the potential challenges with Classify a release versus a release Deploy and manage infrastructure using
integrating open-source software process, and outline how to control the Microsoft automation technologies such as
Inspect open-source software packages for quality of both ARM templates, PowerShell, and Azure
security and license compliance Describe the principle of release gates CLI
Manage organizational security and and how to deal with release notes and Deploy and configure infrastructure using
compliance policies documentation 3rd party tools and services with Azure,
Integrate license and vulnerability scans into Choose a release management tool such as Chef, Puppet, Ansible, and
build and deployment pipelines Explain the terminology used in Azure Terraform
Configure build pipelines to access package DevOps and other Release Management Implement a container strategy including
security and license ratings Tooling how containers are different from virtual

Describe what a Build and Release task machines and how microservices use

M-AZ400 www.globalknowledge.com/en-be/ info@globalknowledge.be 0800/84.009

Module 7: Managing Application Configuration is, what it can do, and some available containers
and Secrets deployment tasks Implement containers using Docker
line Explain why you sometimes need Implement Docker multi-stage builds

Introduction to Security multiple release jobs in one release Deploy and configure a Managed
Implement a Secure Development Process pipeline Kubernetes cluster
Rethinking Application Configuration Data Differentiate between multi-agent and Implement tools to track system usage,
Manage Secrets, Tokens, and Certificates multi-configuration release job feature usage, and flow
Integrating with Identity Management Use release variables and stage Configure crash report integration for client
Systems variables in your release pipeline applications
Implementing Application Configuration Deploy to an environment securely using Implement routing for client application

a service connection crash report data
Lab : Integrating Azure Key Vault with Azure List the different ways to inspect the Develop monitoring and status dashboards
DevOps health of your pipeline and release by Integrate and configure ticketing systems
line using alerts, service hooks, and reports with development team's work

Describe deployment patterns management
After completing this module, students will be Implement Blue Green Deployment Define Site Reliability Engineering
able to: Implement Canary Release Design processes to measure end-user
line Implement Progressive Exposure satisfaction and analyze user feedback

Plan for the transformation with shared Deployment Design processes to automate application
goals and timelines Apply infrastructure and configuration as analytics
Select a project and identify project metrics code principles. Manage alerts and reduce meaningless
and Key Performance Indicators (KPI's) Deploy and manage infrastructure using and non-actionable alerts
Create a team and agile organizational Microsoft automation technologies such Carry out blameless retrospectives and
structure as ARM templates, PowerShell, and create a just culture
Design a tool integration strategy Azure CLI Define an infrastructure and configuration
Design a license management strategy (e.g. Deploy and configure infrastructure using strategy and appropriate toolset for a
Azure DevOps and GitHub users) 3rd party tools and services with Azure, release pipeline and application
Design a strategy for end-to-end traceability such as Chef, Puppet, Ansible, and infrastructure
from work items to working software Terraform Implement compliance and security in your
Design an authentication and access Implement a container strategy including application infrastructure
strategy how containers are different from virtual Describe the potential challenges with
Design a strategy for integrating machines and how microservices use integrating open-source software
on-premises and cloud resources containers Inspect open-source software packages
Describe the benefits of using Source Implement containers using Docker for security and license compliance
Control Implement Docker multi-stage builds Manage organizational security and
Describe Azure Repos and GitHub Deploy and configure a Managed compliance policies
Migrate from TFVC to Git Kubernetes cluster Integrate license and vulnerability scans
Manage code quality including technical Implement tools to track system usage, into build and deployment pipelines
debt SonarCloud, and other tooling solutions feature usage, and flow Configure build pipelines to access
Build organizational knowledge on code Configure crash report integration for package security and license ratings
quality client applications
Explain how to structure Git repos Implement routing for client application Module 20: Validating Code Bases for
Describe Git branching workflows crash report data Compliance
Leverage pull requests for collaboration and Develop monitoring and status line
code reviews dashboards Open-Source Software
Leverage Git hooks for automation Integrate and configure ticketing systems Managing Security and Compliance
Use Git to foster inner source across the with development team's work Policies
organization management Integrating License and Vulnerability
Explain the role of Azure Pipelines and its Define Site Reliability Engineering Scans
components Design processes to measure end-user
Configure Agents for use in Azure Pipelines satisfaction and analyze user feedback Lab : Managing Technical Debt with
Explain why continuous integration matters Design processes to automate SonarQube and Azure DevOps
Implement continuous integration using application analytics line
Azure Pipelines Manage alerts and reduce meaningless
Manage application configuration and and non-actionable alerts After completing this module, students will be
secrets Carry out blameless retrospectives and able to:
Integrate Azure Key Vault with a pipeline create a just culture line
Create and work with GitHub Actions and Define an infrastructure and configuration Plan for the transformation with shared
Workflows strategy and appropriate toolset for a goals and timelines
Implement Continuous Integration with release pipeline and application Select a project and identify project
GitHub Actions infrastructure metrics and Key Performance Indicators
Recommend artifact management tools and Implement compliance and security in (KPI's)
practices your application infrastructure Create a team and agile organizational
Abstract common packages to enable Describe the potential challenges with structure
sharing and reuse integrating open-source software Design a tool integration strategy

M-AZ400 www.globalknowledge.com/en-be/ info@globalknowledge.be 0800/84.009

Migrate and consolidate artifacts Inspect open-source software packages Design a license management strategy
Migrate and integrate source control for security and license compliance (e.g. Azure DevOps and GitHub users)
measures Manage organizational security and Design a strategy for end-to-end
Differentiate between a release and a compliance policies traceability from work items to working
deployment Integrate license and vulnerability scans software
Define the components of a release pipeline into build and deployment pipelines Design an authentication and access
Explain things to consider when designing Configure build pipelines to access strategy
your release strategy package security and license ratings Design a strategy for integrating
Classify a release versus a release process, on-premises and cloud resources
and outline how to control the quality of both Module 14: Third Party Infrastructure as Code Describe the benefits of using Source
Describe the principle of release gates and Tools Available with Azure Control
how to deal with release notes and line Describe Azure Repos and GitHub
documentation Chef Migrate from TFVC to Git
Choose a release management tool Puppet Manage code quality including technical
Explain the terminology used in Azure Ansible debt SonarCloud, and other tooling
DevOps and other Release Management Terraform solutions
Tooling Build organizational knowledge on code
Describe what a Build and Release task is, Lab : Automating Infrastructure Deployments quality
what it can do, and some available in the Cloud with Terraform and Azure Explain how to structure Git repos
deployment tasks Pipelines Describe Git branching workflows
Explain why you sometimes need multiple line Leverage pull requests for collaboration
release jobs in one release pipeline and code reviews
Differentiate between multi-agent and Leverage Git hooks for automation
multi-configuration release job Use Git to foster inner source across the
Use release variables and stage variables in organization
your release pipeline Explain the role of Azure Pipelines and its
Deploy to an environment securely using a components
service connection Configure Agents for use in Azure
List the different ways to inspect the health Pipelines
of your pipeline and release by using alerts, Explain why continuous integration matters
service hooks, and reports Implement continuous integration using
Describe deployment patterns Azure Pipelines
Implement Blue Green Deployment Manage application configuration and
Implement Canary Release secrets
Implement Progressive Exposure Integrate Azure Key Vault with a pipeline
Deployment Create and work with GitHub Actions and
Apply infrastructure and configuration as Workflows
code principles. Implement Continuous Integration with
Deploy and manage infrastructure using GitHub Actions
Microsoft automation technologies such as Recommend artifact management tools
ARM templates, PowerShell, and Azure CLI and practices
Deploy and configure infrastructure using Abstract common packages to enable
3rd party tools and services with Azure, such sharing and reuse
as Chef, Puppet, Ansible, and Terraform Migrate and consolidate artifacts
Implement a container strategy including Migrate and integrate source control
how containers are different from virtual measures
machines and how microservices use Differentiate between a release and a
containers deployment
Implement containers using Docker Define the components of a release
Implement Docker multi-stage builds pipeline
Deploy and configure a Managed Explain things to consider when designing
Kubernetes cluster your release strategy
Implement tools to track system usage, Classify a release versus a release
feature usage, and flow process, and outline how to control the
Configure crash report integration for client quality of both
applications Describe the principle of release gates and
Implement routing for client application how to deal with release notes and
crash report data documentation
Develop monitoring and status dashboards Choose a release management tool
Integrate and configure ticketing systems Explain the terminology used in Azure
with development team's work management DevOps and other Release Management
Define Site Reliability Engineering Tooling
Design processes to measure end-user Describe what a Build and Release task is,
satisfaction and analyze user feedback what it can do, and some available
Design processes to automate application deployment tasks

M-AZ400 www.globalknowledge.com/en-be/ info@globalknowledge.be 0800/84.009

analytics Explain why you sometimes need multiple
Manage alerts and reduce meaningless and release jobs in one release pipeline
non-actionable alerts Differentiate between multi-agent and
Carry out blameless retrospectives and multi-configuration release job
create a just culture Use release variables and stage variables
Define an infrastructure and configuration in your release pipeline
strategy and appropriate toolset for a Deploy to an environment securely using a
release pipeline and application service connection
infrastructure List the different ways to inspect the health
Implement compliance and security in your of your pipeline and release by using
application infrastructure alerts, service hooks, and reports
Describe the potential challenges with Describe deployment patterns
integrating open-source software Implement Blue Green Deployment
Inspect open-source software packages for Implement Canary Release
security and license compliance Implement Progressive Exposure
Manage organizational security and Deployment
compliance policies Apply infrastructure and configuration as
Integrate license and vulnerability scans into code principles.
build and deployment pipelines Deploy and manage infrastructure using
Configure build pipelines to access package Microsoft automation technologies such as
security and license ratings ARM templates, PowerShell, and Azure

CLI
Deploy and configure infrastructure using
3rd party tools and services with Azure,
such as Chef, Puppet, Ansible, and
Terraform
Implement a container strategy including
how containers are different from virtual
machines and how microservices use
containers
Implement containers using Docker
Implement Docker multi-stage builds
Deploy and configure a Managed
Kubernetes cluster
Implement tools to track system usage,
feature usage, and flow
Configure crash report integration for client
applications
Implement routing for client application
crash report data
Develop monitoring and status dashboards
Integrate and configure ticketing systems
with development team's work
management
Define Site Reliability Engineering
Design processes to measure end-user
satisfaction and analyze user feedback
Design processes to automate application
analytics
Manage alerts and reduce meaningless
and non-actionable alerts
Carry out blameless retrospectives and
create a just culture
Define an infrastructure and configuration
strategy and appropriate toolset for a
release pipeline and application
infrastructure
Implement compliance and security in your
application infrastructure
Describe the potential challenges with
integrating open-source software
Inspect open-source software packages
for security and license compliance
Manage organizational security and
compliance policies

M-AZ400 www.globalknowledge.com/en-be/ info@globalknowledge.be 0800/84.009

Integrate license and vulnerability scans
into build and deployment pipelines
Configure build pipelines to access
package security and license ratings

Further Information:

For More information, or to book your course, please call us on 0800/84.009

info@globalknowledge.be

www.globalknowledge.com/en-be/

http://www.globalknowledge.com/en-be/

