

Introduction to Machine Learning Models Using IBM SPSS Modeler (V18.2)

Duration: 2 Days Course Code: 0A079G

_					
•	11	α	r۱/	ie	١٨/:

This course provides an introduction to supervised models, unsupervised models, and association models. This is an application-oriented course and examples include predicting whether customers cancel their subscription, predicting property values, segment customers based on usage, and market basket analysis.

Target Audience:

Data scientists Business analysts Clients who want to learn about machine learning models

Objectives:

Please refer to course overview

Prerequisites:

Knowledge of your business requirements

Content:

Taxonomy of machine learning models	Include categorical predictors	Treatment of missing values in Kohonen	
Identify measurement levels	Treatment of missing values	Unsupervised models: TwoStep and Anomaly detection	
Taxonomy of supervised models	Supervised models: Statistical models for categorical targets - Logistic regression	TwoStep basics	
Build and apply models in IBM SPSS Modeler	Logistic regression basics	TwoStep assumptions	
Supervised models: Decision trees - CHAID	Include categorical predictors	Find the best segmentation model automatically	
CHAID basics for categorical targets	Treatment of missing values	Anomaly detection basics	
Include categorical and continuous predictors	Supervised models: Black box models - Neural networks	Treatment of missing values	
CHAID basics for continuous targets			
Treatment of missing values	Neural network basics	Association models: Apriori	
Supervised models: Decision trees - C&R Tree	Include categorical and continuous predictors	Apriori basics	
C&R Tree basics for categorical targets	Treatment of missing values	Evaluation measures	
Include categorical and continuous predictors	Supervised models: Black box models - Ensemble models	Treatment of missing values	
C&R Tree basics for continuous targets	Ensemble models basics	Association models: Sequence detection	
Treatment of missing values	Improve accuracy and generalizability by boosting and bagging	Sequence detection basics	
Evaluation measures for supervised models	Ensemble the best models	Treatment of missing values	
Evaluation measures for categorical targets	Liselible the best models	Preparing data for modeling	
Evaluation measures for continuous targets	Unsupervised models: K-Means and Kohonen	Examine the quality of the data	
-	K-Means basics	Select important predictors	
Supervised models: Statistical models for continuous targets - Linear regression	Include categorical inputs in K-Means	Balance the data	
Linear regression basics	Treatment of missing values in K-Means		
	Kohonen networks basics		

Further Information:

For More information, or to book your course, please call us on 00 20 (0) 2 2269 1982 or 16142 training@globalknowledge.com.eg www.globalknowledge.com/en-eg/

Global Knowledge, 16 Moustafa Refaat St. Block 1137, Sheraton Buildings, Heliopolis, Cairo