
GK3346 www.globalknowledge.com/en-eg/ training@globalknowledge.com.eg 00 20 (0) 2 2269 1982 or
16142

ALM - Application Lifecycle Management for Developers

Duration: 4 Days Course Code: GK3346

Overview:

Visual Studio 2012 and Visual Studio Team Foundation Server 2012 help software development teams successfully deliver complex software
solutions. Learn how Visual Studio and Team Foundation Server enable you to enforce best practices for software development and to develop
better quality software. This course uses the very latest (2012) versions of Visual Studio and Team Foundation Server.

You'll get answers to these questions:How do software development teams successfully deliver complex software
solutions?How do we improve visibility and monitor the progress and health of large projects?How do we
optimally configure the source control system to suit our requirements?How do we decide on the best
branch plan to use to manage ou development projects?How do we set up an automated build pipeline to
support Continuous Integration (CI)?How do we use Test-Driven Development (TDD) to deliver
demonstrably higher quality?How do we reduce the overhead of writing unite tests and ensure that they
are effective?How do we improve the extensibility, maintainability and testability of our code?How do we
test code that uses external systems suach as databases and remote services?How do we easily pinpoint
and solve issues that occur once the application is live?How do we avoid problems with performance,
reliability, security and maintainability?How do we improve the robustness of code that we write for other
teams to consume?

Objectives:

Learn how to configure Team Foundation Server to support your Build data-driven unit tests to improve testing and use code
software development process coverage to detect weak areas

Use Work Item Tracking to support software development using Appreciate the benefits of using Dependency Injection (DI) and
Scrum, Agile, CMMI and Kanban Inversion of Control (IoC)

See how to take maximum advantage of the source control Explore how to generate and use fakes, stubs, spies and mocks by
system and benefit from workspaces using mocking frameworks

Demystify branch visualisation, change tracking and how to Transform problem solving by quickly locating problems in
create custom check in policies development, test and production

Compare the different types of automated build and see how to Perform automated best practice reviews and implement custom
customise the build process rules for company standards

Investigate how to craft good unit tests and how to manage very Understand how to easily verify correct method and object use at
large suites of unit tests compile time and run timea

GK3346 www.globalknowledge.com/en-eg/ training@globalknowledge.com.eg 00 20 (0) 2 2269 1982 or
16142

Content:

Day 1 The source control repository supports the Doubles and Mocking
line concept of branching, which is an isolation line

mechanism that allows multiple version of a When unit testing code, it is frequently
Introduction to Visual Studio and Team codebase to be managed, worked on and necessary to test code that uses external
Foundation Server versioned independently. This allows resources, such as the file system,
line developers, for example, to start work on new databases and remote services. To make

features while the main codebase is being this possible, a substitute for the
stabilised ready for release. This module Depended On Component (DOC) is
explores branching and reviews a number of injected into the System Under Test (SUT)

Work Item Tracking in Scrum, Agile, CMMI and strategies that can be used when devising that provides the necessary interface but
Kanban your branch plan. It will also cover merging, which doesn't perform any e
line which is the process of taking changes from

one branch and merging them into another Day 4
and shelving, a way to save changes on the line
server that are not yet ready to be

Day 2 incorporated into the live codebase. Branch IntelliTrace
line visualisation, change tracking and merge line

conflict resolution are also covered. Finally,
Introduction to Source Control check in policies are examined as a means of
line controlling what is checked in, alo

line Code Analysis
In this module, we will look at the source line
control system. Visual Studio and Team Team Foundation Build
Foundation Server support the concept of a line The cost of correcting a defect in an
repository, a server-side store for managing On large software teams, it is often application rises very significantly throughout
source code and other project artefacts. Team desirable to set up a build environment the development cycle, hence the well-known
members check items into and out of source where builds of the project are performed expression "Early bugs are cheap bugs". One
control using workspaces, which store and automatically based on some trigger, for of the most effective ways to identify and
manage client-side copies of server-side files. example when doing continuous eliminate defects early on is to conduct
This module addresses all these concepts in integration or nightly builds. This module frequent code reviews. Unfortunately,
detail, in addition to looking at conflict investigates how Team Foundation Build conventional code reviews are both time
resolution and TF.exe, the Team Foundation supports fully automated builds, from the consuming and resource intensive, meaning
Version Control Tool. build controllers and that they are rarely carried out as often as
line they should be. Visual Studio includes a code

Day 3 analysis engine that is able to perform a code
Branching, Merging and Shelving line review on demand or on every build of an
line application. It is able to identify many

Test-Driven Development and Unit Testing common problems that can occur, including
line issues with performance, reliability, security,

maintainability, best practice violations and
Unit testing is now considered by most much, much more. This module demonstrates
developers to be an essential part of writing how to configure code analysis to suit specific
high quality software and it is now compulsory needs, how to under
in many organisations. Test-driven line
development (TDD) is the next logical
progression from unit testing, which delivers Code Contracts
demonstrably higher levels of code quality line
than simple unit testing. This module takes a
detailed look at unit testing and TDD, from the The advantages of implementing method
real-world benefits to how to craft good unit preconditions, postconditions and object
tests (and how to avoid writing bad ones). It invariants are well understood. However,
also explains the AAA pattern, the comprehensively implementing these properly
red-green-refactor approach to TDD, the can be difficult and time consuming. This
continuous test runner and how to manage module looks at how code contracts, which
large suites of unit tests so that the right tests are part of the .NET Framework, can
can be run frequently and quickly. implement preconditions, postconditions and
line object invariants simply, quickly and

effectively. Code contracts also provide a
Data-Driven Unit Testing, Code Coverage major advantage over manually implemented
line equivalents, namely that code contracts can

be verified at compile time as well as at run
Developers who practice unit testing and TDD time. This provides immediate and
often find themselves needing to test a comprehensive feedback on all contract
behaviour in a number of different ways. violations without needing to test the

GK3346 www.globalknowledge.com/en-eg/ training@globalknowledge.com.eg 00 20 (0) 2 2269 1982 or
16142

While this can be achieved by writing a application. The configuration of the tooling
number of very similar unit tests, a better way and of the static and runtime analysis are also
is to create a data-driven unit test, which covered.
allows a single test to execute many times line
with different test values. This module
examines how to create and configure
data-driven unit tests. It also looks at code
coverage, which is a way to determine easily
how effective the unit test suite is and to
identify any areas in the software which could
benefit from the creation of additional tests.
line

Dependency Injection and Inversion of
Control
line

Many developers have heard about the clear
advantages of adhering to the SOLID
principles of good design, but not all are fluent
in applying them. Dependency injection is not
only key to writing SOLID code, but it can also
help implement late binding, improve
extensibility, assist large teams practicing
parallel development and improve
maintainability. Importantly, it can also
significantly improve the testability of code.
This module not only looks at the different
forms of dependency injection and at how to
use dependency injection correctly, but also
explains how to use an Inversion of Control
(IoC) container to handle dependency
management and complex construction
automatically. Configuring the IoC container
in code and in the application configuration
file, which allows the application to be
reconfigured without the need for r
line

Further Information:

For More information, or to book your course, please call us on 00 20 (0) 2 2269 1982 or 16142

training@globalknowledge.com.eg

www.globalknowledge.com/en-eg/

Global Knowledge, 16 Moustafa Refaat St. Block 1137, Sheraton Buildings, Heliopolis, Cairo

http://www.globalknowledge.com/en-eg/

