skillsoft[⊁] global knowledge_™

Implementing Cisco MPLS

Duration: 5 Days Course Code: MPLS Version: 3.1

Overview:

Multiprotocol Label Switching (MPLS) is a high-performance method for forwarding packets through a network enabling routers at the edge of a network to apply simple labels to packets. This practice allows the edge devices to switch packets according to labels, with minimal lookup overhead. MPLS integrates the performance and traffic-management capabilities of data link Layer 2 with the scalability and flexibility of network Layer 3 routing.

This course covers both introductory and advanced MPLS and MPLS VPNs concepts. Configuration, implementation and troubleshooting skills are all included with a significnat focus on the use of labs to consolidate the learners knowledge. At the end of this course you should be able to design, implement and maintain core IP routing network infrastructures.

Each student will have their own virtual pod of equipment with access to the labs 24x7 for 90 days

This course is worth 40 Credits in the Continuing Education Program

Company Events

These events can be delivered exclusively for your company at our locations or yours, specifically for your delegates and your needs. The Company Events can be tailored or standard course deliveries.

Target Audience:

Service Provider and Enterprise network engineers that design, deploy and maintain core IP routing network infrastructures.

Objectives:

- After you complete this course you should be able to:
- Describe the features of MPLS
- Describe how MPLS labels are assigned and distributed
- Identify the Cisco IOS tasks and command syntax necessary to implement MPLS on frame-mode Cisco IOS platforms
- Describe the MPLS peer-to-peer architecture and explain the routing and packet forwarding model in this architecture
- Identify the Cisco IOS command syntax required to successfully configure, monitor, and troubleshoot VPN operations
- Identify how the MPLS VPN model can be used to implement managed services and internet access
- Describe the various internet access implementations that are available and the benefits and drawbacks of each model
- Provide an overview of MPLS Traffic Engineering

Prerequisites:

Attendees should meet the following prerequisites:

- Intermediate to advanced knowledge of Cisco IOS Software configuration
- Configuring and troubleshooting EIGRP, OSPF, IS-IS and BGP
- CCNA Implementing and Administering Cisco Solutions
- ENCOR Implementing and Operating Cisco Enterprise Network Core Technologies
- SPFNDU Understanding Cisco Service Provider Network Foundations

Testing and Certification

Recommended preparation for exam(s):

There are no exams currently associated to this course

Content:

Introducing Basic MPLS Concepts

- Foundations of Traditional IP Routing
- Basic MPLS Features
- Benefits of MPLS
- MPLS Terminology: Label Switch Router
- MPLS Terminology: Label Switched Path
- MPLS Terminology: Upstream and Downstream
- MPLS Architecture Components
- Architecture of Ingress Edge LSRs
- Architecture of Intermediate LSRs
- Architecture of Egress Edge LSRs

Introducing MPLS Labels and Label Stack

- MPLS Labels
- FEC and MPLS Forwarding
- MPLS Label Imposition
- MPLS Label Stack

Identifying MPLS Applications

- MPLS Services
- MPLS Unicast IP Routing
- MPLS Multicast IP Routing
- MPLS VPNs
- MPLS Traffic Engineering
- MPLS Quality of Service
- Any Transport over MPLS
- Interactions Between MPLS Services

Discovering LDP Neighbours

- Label Distributing Protocols
- LDP Neighbour Session Establishment
- LDP Link Hello Message
- LDP Negotiating Label Space
- Discovering LDP Neighbours
- Negotiating LDP Sessions

Introducing Typcial Label Distribution in Frame-Mode MPLS

- Propagating Labels Across a Network
- Building Blocks for IP Forwarding
- Using the FIB Table to Forward Packets
- Using LDP to Forward Packets
- Label-Switched Path
- Propagating Labels by Using PHP
- Impact of IP Aggregation on LSPs
- Label Allocation in a Frame-Mode MPLS Network
- Label Distribution and Advertisement
- Receiving Label Advertisement
- Liberal Label Retention
- Further Label Allocation
 Frame-Mode Loop Detection Using the
- MPLS TTL Field Normal TTL Operation

MPLS 3.1

- Disabling TTL Popagation

Introducing Convergence in Frame-Mode

Introducing MPLS VPN Architecture

- MPLS VPN Architecture
- PE Router Architecture
- VRF Overview
- Methods of Popagating Routing Information across the P-Network
- Route Distinguishers
- RD Format
- RD Operation in MPLS VPN
- RD Process Flow
- Route Targets
- RT Operation
- RT and RD Process Flow

Introducing the MPLS VPN Routing Model

- MPLS VPN Routing
- CE Router MPLS VPN Routing
- IP Router MPLS VPN Routing
- PE Router MPLS VPN Routing
- Support for Internet Routing
- Routing Tables on PE Routers
- Identifying End-to-End Routing Update Flow

Forwarding MPLS VPN Packets

- End-to-End VPN Mechanisms
- VPN Penultimate Hop Popping
- Propagating VPN Labels Between PE Routers
- Effects of MPLS VPNs on Label Propagagtion
- Effects of MPLS VPNs on Packet Forwarding

Implementing an MP-BGP Session Between PE Routers

- VRF Table
- Need for Routing Protocol Contexts
- VPN-Aware Routing Protocols
- Using VRF Tables
- Propagating BGP Routes Outbound Example
- Propagating Non-BGP Routes -Outbound Example
- Propagating BGP Routes -Inbound Example
- Propagating Non-BGP Routes Inbound Example
- Configuring BGP Address Families
- Enabling BGP Neighbours
- Configuring MP-BGP
- Configuring MP-IBGP
- VFR Configuration Tasks
- Creating VRF Tables and Assigning RDs

training@globalknowledge.qa

- Specifying Export and Import RTs
- Using MPLS VPN IDs

www.globalknowledge.com/en-qa/

MPLS VPN Implementation

Troubleshooting MPLS VPNs

- Identifying Preliminary Steps in MPLS VPN Troubleshooting
- Verifying the Routing Information Flow
- Validating CE-to-PE Routing Information Flow
- Validating PE-to-PE Routing Information Flow
- Validating PE-to-CE Routing Information Flow
 Identifying the Issues when Verifying the

Validating Cisco Express Forwarding

MPLS VPN Troubleshooting Command

Validating the End-to-End LSP

Particpants in Overlapping VPNs

Typical Overlapping VPNs

Overlapping VPN Routing

Central Services VPN

VPN Requirements

Advanced BRF Features

Managed CE Routers

Overview

Providers

Service

Customer

a VPN Customer

Customer Site

Overlapping VPN Data Flow

Configuring Overlaping VPNs

Central Services VPN Routing

Central Services VPN Data Flow Model

Central Services VPN and Overlapping

Configuring RDs and RTs in a Central

Services VPN and Overlapping VPN

Configuring Selective VRF Import

Configuring Selective VRF Export

VRF Creation and RD Overview

Internet Access and MPLS VPNs

Classical Internet Access

Multisite Internet Access

Wholesale Internet Access

Internet Design Models for Service

Internet Access Through Global Routing

Internet Access Through Route Leaking

Implementing Classical Internet Access for

Implementing Internet Access from Every

Implementing Wholesale Internet Access

Head Office Tel.: +974 40316639

Internet Access as a Seperate VPN

Classical Internet Access for a VPN

Using Seperate Subinterfaces

Internet Access Through a Seperate VPN

Configuring Managed CE Routers

Customer Internet Connectivity Scenarios

Validating the LFIB Status

Data Flow

Summarv

Complex MPLS VPNs

Status

MPLS

- MPLS Steady-State Operation
- Link Failure State
- Routing Protocol Convergence After a Link Failure
- MPLS Convergence After a Link Failure
- Link Recovery Actions

Implementing Frame-Mode MPLS Implementation on Cisco IOS Platforms

- Cisco IOS Platform-Switching Mechanisms
- Using Standard IP Switching
- Cisco Express Forwarding Switching Architecture
- Configuring IP Cisco Express Forwarding
- Monitoring IP Cisco Express Forwarding
- MPLS Configuration Tasks
- Configuring the MPLS ID on a Router
- Configuring MPLS on a Frame-Mode Instance
- Configuring IP TTL Propagation
- Configuring Conditional Label Distribution

Monitoring and Troubleshooting Frame-Mode MPLS on Cisco IOS Platforms

- Monitoring MPLS
- Monitoring LDP
- Monitoring Label Switching
- Debugging MPLS and LDP
- Common Frame-Mode MPLS Issues
- Solving LDP Session Start-up Issues
- Solving Label Allocation Issues
- Solving Label Distribution Issues
- Solving Packet-Labeling Issues
- Solving Intermittent MPLS Failures
- Solving Packet Propagation Issues

Introducing VPNs

- Basic VPN Overview
- VPN Implementation Models
- Overlay VPN Technologies
- Peer-to-Peer VPN Technologies
- Benefits of VPNs

MPLS 3.1

Drawbacks of VPNs

- Using MPLS VPN Mechanisms of Cisco IOS platforms
- Configuring an MP-BGP Session Between PE Routers
- Configuring VRF Tables
- Configuring Small-Scale Routing
- Protocols Between PE and CE routers Monitoring MPLS VPN Operations
- Configuring OSPF as the Routing
- Protocol Between PE and CE Routers Configuring BGP as the Routing Protocol
- between PE and CE Routers
- Troubleshooting MPLS VPNs

Configuring Small-Scale Routing Protocols Between PE and CE Routers

- Configuring PE-CE Routing Protocols
- Selecting the VRF Routing Context for
- BGP
- Configuring Per-VRF Static Routes
 Configuring RIP PE-CE Routing
- Configuring EIGRP PE-CE Routing
- Configuring SOO for EIGRP PE-CE Loop Prevention

Monitoring MPLS VPN Operations

- Monitoring VRFs
- Monitoring VRF Routing
- Monitoring MP-BGP Sessions
- Monitoring an MP-BGP VPNv4 Table
- Monitoring Per-VRF Cisco Express Forwarding and LFIB Structures
- Monitoring Labels Associated with VPNv4 Routes
- Identifying MPLS VPN Diagnostic Commands

Configuring OSPF as the Routing Protocol Between PE and CE Routers

- OSPF Hierarchical Model
- OSPF in an MPLS VPN Routing Model
- OSPF Superbackbone-OSPF-BGP
- Hierarchy Issue
- OSPF in MPLS VPNs-Goals
- OSPF Superbackbone- Route Propagation Example
- OSPF Superbackbone- Rules
- OSPF Superbackbone- Implementation
- OSPF Superbackbone- External Routes
- OSPF Superbackbone- Mixing Routing Protocols
- Configuring PE-CE OSPF Routing
- Routing Loops Between MP-BGP and OSPF
- OSPF Down-Bit-Loop Prevention
- Optimizing of Packet Forwarding Across the MPLS VPN Backbone
- Routing Loops across OSPF Domains
- OSPF Tag Field-Operation
- OSPF Tag Field-Usage Guidelines
- OSPF Tag Field-Routing Loop Prevention

training@globalknowledge.qa

Sham Link

www.globalknowledge.com/en-qa/

- Seperate Internet Access Benefits and Limitations
- Running an Internet Backbone in a VPN: Benefits and Limitations

Introducing MPLS TE Components

- TE Concepts
- TE Motivations
- Business Drivers for TE
- Congestion Avoidance and TE
- TE with a Layer 2 Overlay Model
- Example of TE with a Layer 2 Overlay Model
- Drawbacks of the Layer 2 Overlay Solution
- Layer 3 Routing Model Without TE
- TE with a Layer 3 Routing Model
- MPLS TE Model

RSVP

Autoroute

Autoroute Example

Computation

- MPLS TE Traffic Tunnels
- Traffic Tunnel Attributes
- Link Resource Attributes
- Constraint-Based Path Computation

Role of RSVP in Path Setup Procedures

Path Setup and Admission Control with

- Example of Constraint-Based Path
- Computation (Bandwidth) MPLS TE Processes

Forwarding Traffic to a Tunnel

Understanding MPLS TE Operations

MPLS TE Link Resource Attributes

MPLS TE Link Resource Attributes:

MPLS TE Link Resource Attributes:

MPLS TE Tunnel Attributes: Traffic

MPLS TE Tunnel Attributes: Tunnel

MPLS TE Tunnel Attributes: Adaptability,

MPLS TE Tunnel Attributes: Resilience

Implementing TE Policies with Affinity Bits

Propagating MPLS TE Link Attributes with

Head Office Tel.: +974 40316639

Reservable Bandwidth

(Administrative Weight)

Resource Class Affinity

Priority and Pre-emption

Using Affinity Bits in TE Policies

Link-State Routing Protocol

Constraint-Based Path Computation
 Constraint--Based Path Computation: Path

Example of Constraint-Based Path

Computation (resource Affinity)

RSVP Usage in Path Setup

MPLS TE Tunnel Attributes

Resource Class

Management

Selection

Path Setup

Maximum Bandwidth and Maximum

MPLS TE Link Resource Attributes: Link

Constraint-Based Specific Link Metric

Parameter and Generic Path Selection and

Attributes Used by Constraint-Based Path

Configuring BGP as the Routing Protocol Between PE and CE Routers

- Configuring a Per-VRF BGP Routing Context
- Reasons for Limiting the Number of Routes in a VRF
- Limiting the Number of Prefixes Received from a BGP Neighbour
- Limiting the Total Number of VRF Routes
- Identifying AS-Override Issues
- AS-Override Implementation
- AS-Path Prepending
- Idenifying the Allow-AS Issue
- Allow-AS in Implementation
 Implementing SOO for Loop Prevention

- Hop-by-Hop Path Setup with RSVP
- Tunnel and Link Admission Control
- Path Rerouting
- Path Reoptimization
- Path Rerouting: Link Failure
- Assigning Traffic to Traffic Tunnels
- Using Static Routing to Assign Traffic to a Traffic Tunnel
- Autoroute
- Autoroute: Path Selection Rules
- Autoroute: Default Metric
- Autoroute: Relative and Absolute Metric
- Forwarding Adjacency
- Forwarding Adjacency Traffic Flows

Configuring MPLS TE on Cisco IOS Platforms

- MPLS TE Configuration Flow Chart
- Enabling Device-Level MPLS TE Support
- Enabling MPLS TE Support in IS-IS
- Enabling MPLS TE Support in OSPF
- Enabling Basic MPLS TE On an Interface
- Creating and Configuring a Traffic Tunnel
- Mapping Traffic into Tunnels with Autoroute

Monitoring Basic MPLS TE on Cisco IOS Platforms

- Monitoring MPLS TE Tunnels
- show ip rsvpinterface Command
- show mpls traffic-eng tunnels brief commands
- Monitoring MPLS TE
- show mpls traffic-eng autoroute Command
- show ip cef Command

Labs

- Discovery 1: Implement SP and Customer IP Addressing and IGP Routing
- Discovery 2: Verify Cisco Express Forwarding
- Discovery 3: Enable MPLS
- Discovery 4: Change IP TTL Propagation
- Discovery 5: Implement the Core MPLS Environment in the Service Provider Network
- Discovery 6: Configure MP-IBGP
- Discovery 7: Configure the VRF Instances
- Discovery 8: Configure RIP as a PE-CE Routing Protocol
- Discovery 9: Configure EIGRP as a PE-CE Routing Protocol
- Discovery 10: Implement EIGRP-Based MPLS VPNs
- Discovery 11: Configure OSPF as a PE-CE Routing Protocol
- Discovery 12: Implement OSPF-Based MPLS VPNs
- Discovery 13: Configure BGP as a PE-CE Routing Protocol
- Discovery 14: Implement BGP-Based MPLS VPNs
- Discovery 15: Configure a Central Services

VPN

Discovery 16: Configure MPLS Traffic Engineering

 Discovery 17: Implement MPLS Traffic Engineering

Further Information:

For More information, or to book your course, please call us on Head Office Tel.: +974 40316639

training@globalknowledge.qa

www.globalknowledge.com/en-qa/

Global Knowledge, Qatar Financial Center, Burj Doha, Level 21, P.O.Box 27110, West Bay, Doha, Qatar