Introduction to Statistical Analysis Using IBM SPSS (V20)

Duración: 2 Días Código del Curso: 0G510G

Temario:
Introduction to Statistical Analysis Using IBM SPSS Statistics is a two day instructor-led classroom course that provides an application-oriented introduction to the statistical component of IBM® SPSS® Statistics. You will review several statistical techniques and discuss situations in which you would use each technique, the assumptions made by each method, how to set up the analysis, as well as how to interpret the results. This includes a broad range of techniques for exploring and summarizing data, as well as investigating and testing underlying relationships. You will gain an understanding of when and why to use these various techniques as well as how to apply them with confidence, and interpret their output, and graphically display the results.

Dirigido a:
This basic course is for: anyone who has worked with IBM SPSS Statistics and wants to become better versed in the basic statistical capabilities of IBM SPSS Statistics Base anyone with limited or no statistical background anyone who wants to refresh their knowledge and statistical experience that were gained many years ago

Objetivos:
- Please refer to course overview.

Prerequisitos:
You should have:
- General computer literacy
- Completion of the "Introduction to IBM SPSS Statistics" and/or "Data Management and Manipulation with IBM SPSS Statistics" courses or experience with IBM SPSS Statistics (Version 15 or later) including familiarity with opening, defining, and saving data files and manipulating and saving output
Contenido:

- Explica los pasos básicos del proceso de investigación
- Descripción de los niveles de medida usados en IBM SPSS Statistics
- Use los opciones en el procedimiento Frequencies
- Use los opciones en los procedimientos Crosstabs, Descriptives, y Explore
- Explica la influencia del tamaño de la muestra
- Use los opciones en el procedimiento Independent-Samples T Test
- Use los opciones en el procedimiento Paired-Samples T Test
- Use los opciones en el procedimiento One-Way ANOVA
- Visualiza la relación entre dos variables a través de diagramas, utilizando el procedimiento Chart Builder
- Explica la regresión lineal y sus suposiciones
- Describe cuando se deben utilizar pruebas no paramétricas

- Explica las diferencias entre las poblaciones y las muestras
- Explica las diferencias entre los experimentos y no experimentales
- Explica las diferencias entre las variables independientes y dependientes
- Entiende las distribuciones de datos - Teoría
- Use medidas de tendencia central y dispersión
- Use distribuciones normales y z
- Use las opciones en el procedimiento Crosstabs
- Entiende los resultados del procedimiento Frequencies
- Use los procedimientos Data Distributions for Categorical Variables
- Use el procedimiento Interpret the results of the Frequencies
- Use los procedimientos Data Distributions for Scale Variables
- Use el procedimiento Interpret the results of the Frequencies
- Use los procedimientos Making Inferences about Populations from Samples
- Explica la naturaleza de la probabilidad
- Explica la hipótesis de prueba
- Explica diferentes tipos de errores estadísticos
- Explica las diferencias entre estadísticas y prácticas
- Relaciones entre variables categóricas
- Requiere estadísticas apropiadas para una crosstabulación
- Entiende los resultados de un análisis ANOVA de una vía
- Use el procedimiento Chart Builder para crear un gráfico de error bar
- Use los procedimientos Bivariate Plots and Correlations for Scale Variables
- Explica el coeficiente de correlación de Pearson
- Explica las opciones de los procedimientos Bivariate Correlations

Tel.: (34) 91 425 06 60
www.globalknowledge.es info.cursos@globalknowledge.es
Use the Independent-Samples T Test to test the difference in means
Know how to interpret the results of a Independent-Samples T Test
Use the Chart Builder to create an error bar graph to display mean differences
The Paired-Samples T Test
Interpret the results of a Paired-Samples T Test
One-Way ANOVA
Check the assumptions for One-Way ANOVA
Interpret the results of a One-Way ANOVA analysis
Use the Chart Builder to create an error bar to graph mean differences
Bivariate Plots and Correlations for Scale Variables
Explain the Pearson correlation coefficient and its assumptions
Interpret a Pearson correlation coefficient
Explain the options of the Bivariate Correlations procedure
Regression Analysis
Explain the options of the Linear Regression procedure
Interpret the results of the Linear Regression procedure
Use Automatic Linear Models to perform regression
Nonparametric Tests
Describe the options in the Nonparametric Tests procedure dialog box and tabs
Interpret the results of several types of nonparametric tests

Regression Analysis
Explain the options of the Linear Regression procedure
Interpret the results of the Linear Regression procedure
Use Automatic Linear Models to perform regression
Nonparametric Tests
Describe the options in the Nonparametric Tests procedure dialog box and tabs
Interpret the results of several types of nonparametric tests

- Explain differences between populations and samples
- Explain differences between experimental and non-experimental research designs
- Explain differences between independent and dependent variables
- Understanding Data Distributions - Theory
- Use measures of central tendency and dispersion
- Use normal distributions and z-scores
- Data Distributions for Categorical Variables
- Interpret the results of the Frequencies procedure
- Data Distributions for Scale Variables
- Interpret the results of the Frequencies, Descriptives, and Explore procedures
- Making Inferences about Populations from Samples
- Explain the nature of probability
- Explain hypothesis testing
- Explain different types of statistical errors and power
- Explain differences between statistical and practical importance
- Relationships Between Categorical Variables
- Request appropriate statistics for a crosstabulation
- The Independent- Samples T Test
- Use the Independent-Samples T Test to test the difference in means
- Know how to interpret the results of a Independent-Samples T Test
- Use the Chart Builder to create an error bar graph to display mean differences
- The Paired-Samples T Test
- Interpret the results of a Paired-Samples T Test
- One-Way ANOVA
- Check the assumptions for One-Way ANOVA analysis
- Use the Chart Builder to create an error bar to graph mean differences
- Bivariate Plots and Correlations for Scale Variables
- Explain the Pearson correlation coefficient and its assumptions
- Interpret a Pearson correlation coefficient
- Explain the options of the Bivariate Correlations procedure
- Regression Analysis
- Interpret the results of the Linear Regression procedure
- Use Automatic Linear Models to perform regression
- Nonparametric Tests
- Describe the options in the Nonparametric Tests procedure dialog box and tabs
- Interpret the results of several types of nonparametric tests

- Explain differences between populations and samples
- Explain differences between experimental and non-experimental research designs
- Explain differences between independent and dependent variables
- Understanding Data Distributions - Theory
- Use measures of central tendency and dispersion
- Use normal distributions and z-scores
- Data Distributions for Categorical Variables
- Interpret the results of the Frequencies procedure
- Data Distributions for Scale Variables
- Interpret the results of the Frequencies, Descriptives, and Explore procedures
- Making Inferences about Populations from Samples
- Explain the nature of probability
- Explain hypothesis testing
- Explain different types of statistical errors and power
- Explain differences between statistical and practical importance
- Relationships Between Categorical Variables
- Request appropriate statistics for a crosstabulation
- The Independent- Samples T Test
- Use the Independent-Samples T Test to test the difference in means
- Know how to interpret the results of a Independent-Samples T Test
- Use the Chart Builder to create an error bar graph to display mean differences
- The Paired-Samples T Test
- Interpret the results of a Paired-Samples T Test
- One-Way ANOVA
- Check the assumptions for One-Way ANOVA analysis
- Use the Chart Builder to create an error bar to graph mean differences
- Bivariate Plots and Correlations for Scale Variables
- Explain the Pearson correlation coefficient and its assumptions
- Interpret a Pearson correlation coefficient
- Explain the options of the Bivariate Correlations procedure
- Regression Analysis
- Interpret the results of the Linear Regression procedure
- Use Automatic Linear Models to perform regression
- Nonparametric Tests
- Describe the options in the Nonparametric Tests procedure dialog box and tabs
- Interpret the results of several types of nonparametric tests

www.globalknowledge.es info.cursos@globalknowledge.es (34) 91 425 06 60
Interpret cell counts and percents in a crosstabulation
Use the Chi-Square test, interpret its results, and check its assumptions
Use the Chart Builder to visualize a crosstabulation
Use additional syntax-only Crosstabs features
The Independent- Samples T Test
Use the Independent-Samples T Test to test the difference in means
Know how to interpret the results of a Independent-Samples T Test
Use the Chart Builder to create an error bar graph to display mean differences
The Paired-Samples T Test
Interpret the results of a Paired-Samples T Test
One-Way ANOVA
Check the assumptions for One-Way ANOVA
Interpret the results of a One-Way ANOVA analysis
Use the Chart Builder to create an error bar graph to display mean differences
Bivariate Plots and Correlations for Scale Variables
Explain the Pearson correlation coefficient and its assumptions
Interpret a Pearson correlation coefficient
Explain the options of the Bivariate Correlations procedure
Regression Analysis
Explain the options of the Linear Regression procedure
Interpret the results of the Linear Regression procedure
Use Automatic Linear Models to perform regression
Nonparametric Tests
Describe the options in the Nonparametric Tests procedure dialog box and tabs
Interpret the results of several types of nonparametric tests

Explain differences between populations and samples
Explain differences between experimental and non-experimental research designs
Explain differences between independent and dependent variables
Understanding Data Distributions - Theory
Use measures of central tendency and dispersion
Use normal distributions and z-scores
Data Distributions for Categorical Variables
Interpret the results of the Frequencies procedure
Data Distributions for Scale Variables
Interpret the results of the Frequencies, Descriptives, and Explore procedures
Making Inferences about Populations from Samples
Explain the nature of probability
ANOVA
Interpret the results of a One-Way ANOVA analysis
Use the Chart Builder to create an error bar graph to display mean differences
Bivariate Plots and Correlations for Scale Variables
Explain the Pearson correlation coefficient and its assumptions
Interpret a Pearson correlation coefficient
Explain the options of the Bivariate Correlations procedure
Regression Analysis
Explain the options of the Linear Regression procedure
Interpret the results of the Linear Regression procedure
Use Automatic Linear Models to perform regression
Nonparametric Tests
Describe the options in the Nonparametric Tests procedure dialog box and tabs
Interpret the results of several types of nonparametric tests

Variables
Request appropriate statistics for a crosstabulation
Interpret cell counts and percents in a crosstabulation
Use the Chi-Square test, interpret its results, and check its assumptions
Use the Chart Builder to visualize a crosstabulation
Use additional syntax-only Crosstabs features
The Independent- Samples T Test
Use the Independent-Samples T Test to test the difference in means
Know how to interpret the results of a Independent-Samples T Test
Use the Chart Builder to create an error bar graph to display mean differences
The Paired-Samples T Test
Interpret the results of a Paired-Samples T Test
One-Way ANOVA
Check the assumptions for One-Way ANOVA
Interpret the results of a One-Way ANOVA analysis
Use the Chart Builder to create an error bar graph to display mean differences
Bivariate Plots and Correlations for Scale Variables
Explain the Pearson correlation coefficient and its assumptions
Interpret a Pearson correlation coefficient
Explain the options of the Bivariate Correlations procedure
Regression Analysis
Explain the options of the Linear Regression procedure
Interpret the results of the Linear Regression procedure
Use Automatic Linear Models to perform regression
Nonparametric Tests
Describe the options in the Nonparametric Tests procedure dialog box and tabs
Interpret the results of several types of nonparametric tests

Explain differences between populations and samples
Explain differences between experimental and non-experimental research designs
Explain differences between independent and dependent variables
Understanding Data Distributions - Theory
Use measures of central tendency and dispersion
Use normal distributions and z-scores
Data Distributions for Categorical Variables
Interpret the results of the Frequencies procedure
Data Distributions for Scale Variables
Interpret the results of the Frequencies, Descriptives, and Explore procedures
Making Inferences about Populations from Samples
Explain the nature of probability
Explain hypothesis testing
Explain different types of statistical errors and power
Explain differences between statistical and practical importance
Relationships Between Categorical Variables
Request appropriate statistics for a crosstabulation
Interpret cell counts and percents in a crosstabulation
Use the Chi-Square test, interpret its results, and check its assumptions
Use the Chart Builder to visualize a crosstabulation
Use additional syntax-only Crosstabs features
- Explain hypothesis testing
- Explain different types of statistical errors and power
- Explain differences between statistical and practical importance
- Relationships Between Categorical Variables
- Request appropriate statistics for a cross-tabulation
- Interpret cell counts and percents in a cross-tabulation
- Use the Chi-Square test, interpret its results, and check its assumptions
- Use the Chart Builder to visualize a cross-tabulation
- Use additional syntax-only Crosstabs features
- The Independent- Samples T Test
- Use the Independent-Samples T Test to test the difference in means
- Know how to interpret the results of a Independent-Samples T Test
- Use the Chart Builder to create an error bar graph to display mean differences
- The Paired-Samples T Test
- Interpret the results of a Paired-Samples T Test
- One-Way ANOVA
- Check the assumptions for One-Way ANOVA
- Interpret the results of a One-Way ANOVA analysis
- Use the Chart Builder to create an error bar to graph mean differences
- Bivariate Plots and Correlations for Scale Variables
- Explain the Pearson correlation coefficient and its assumptions
- Interpret a Pearson correlation coefficient
- Explain the options of the Bivariate Correlations procedure
- Regression Analysis
- Explain the options of the Linear Regression procedure
- Interpret the results of the Linear Regression procedure
- Use Automatic Linear Models to perform regression
 - Nonparametric Tests
 - Describe the options in the Nonparametric Tests procedure dialog box and tabs
 - Interpret the results of several types of nonparametric tests

- Explain differences between populations and samples
- Explain differences between experimental and non-experimental research designs
- Explain differences between independent and dependent variables
- Understanding Data Distributions - Theory
- Use measures of central tendency and dispersion
- Use normal distributions and z-scores

- The Independent- Samples T Test
- Use the Independent-Samples T Test to test the difference in means
- Know how to interpret the results of a Independent-Samples T Test
- Use the Chart Builder to create an error bar graph to display mean differences
- The Paired-Samples T Test
- Interpret the results of a Paired-Samples T Test
- One-Way ANOVA
- Check the assumptions for One-Way ANOVA
- Interpret the results of a One-Way ANOVA analysis
- Use the Chart Builder to create an error bar graph to display mean differences
- Bivariate Plots and Correlations for Scale Variables
- Explain the Pearson correlation coefficient and its assumptions
- Interpret a Pearson correlation coefficient
- Explain the options of the Bivariate Correlations procedure
- Regression Analysis
- Explain the options of the Linear Regression procedure
- Interpret the results of the Linear Regression procedure
- Use Automatic Linear Models to perform regression
 - Nonparametric Tests
 - Describe the options in the Nonparametric Tests procedure dialog box and tabs
 - Interpret the results of several types of nonparametric tests

- Explain differences between populations and samples
- Explain differences between experimental and non-experimental research designs
- Explain differences between independent and dependent variables

www.globalknowledge.es info.cursos@globalknowledge.es (34) 91 425 06 60
- Explain the basic steps of the research
- Describe the options in the Nonparametric Tests procedure dialog box and tabs
- Interpret the results of the Frequencies procedure
- Explain differences between populations and samples
- Use measures of central tendency and dispersion
- Use normal distributions and z-scores
- Data Distributions for Categorical Variables
- Interpret the results of the Frequencies procedure
- Data Distributions for Scale Variables
- Interpret the results of the Frequencies, Descriptives, and Explore procedures
- Making Inferences about Populations from Samples
- Explain the nature of probability
- Explain hypothesis testing
- Explain different types of statistical errors and power
- Explain differences between statistical and practical importance
- Relationships Between Categorical Variables
- Request appropriate statistics for a crosstabulation
- Interpret cell counts and percents in a crosstabulation
- Use the Chi-Square test, interpret its results, and check its assumptions
- Use the Chart Builder to visualize a crosstabulation
- Use additional syntax-only Crosstabs features
- The Independent-Samples T Test
- Use the Independent-Samples T Test to test the difference in means
- Know how to interpret the results of a Independent-Samples T Test
- Use the Chart Builder to create an error bar graph to display mean differences
- The Paired-Samples T Test
- Interpret the results of a Paired-Samples T Test
- One-Way ANOVA
- Check the assumptions for One-Way ANOVA
- Interpret the results of a One-Way ANOVA analysis
- Use the Chart Builder to create an error bar graph to display mean differences
- Bivariate Plots and Correlations for Scale Variables
- Explain the Pearson correlation coefficient and its assumptions
- Interpret a Pearson correlation coefficient
- Explain the options of the Bivariate Correlations procedure
- Regression Analysis
- Explain the options of the Linear Regression procedure
- Interpret the results of the Linear Regression procedure
- Use Automatic Linear Models to perform regression
- Nonparametric Tests
- Describe the options in the Nonparametric Tests procedure dialog box and tabs
- Interpret the results of several types of nonparametric tests
- Understanding Data Distributions - Theory
- Use measures of central tendency and dispersion
- Use normal distributions and z-scores
- Data Distributions for Categorical Variables
- Interpret the results of the Frequencies procedure
- Data Distributions for Scale Variables
- Interpret the results of the Frequencies, Descriptives, and Explore procedures
- Making Inferences about Populations from Samples
- Explain the nature of probability
- Explain hypothesis testing
- Explain different types of statistical errors and power
- Explain differences between statistical and practical importance
- Relationships Between Categorical Variables
- Request appropriate statistics for a crosstabulation
- Interpret cell counts and percents in a crosstabulation
- Use the Chi-Square test, interpret its results, and check its assumptions
- Use the Chart Builder to visualize a crosstabulation
- Use additional syntax-only Crosstabs features
- The Independent-Samples T Test
- Use the Independent-Samples T Test to test the difference in means
- Know how to interpret the results of a Independent-Samples T Test
- Use the Chart Builder to create an error bar graph to display mean differences
- The Paired-Samples T Test
- Interpret the results of a Paired-Samples T Test
- One-Way ANOVA
- Check the assumptions for One-Way ANOVA
- Interpret the results of a One-Way ANOVA analysis
- Use the Chart Builder to create an error bar graph to display mean differences
- Bivariate Plots and Correlations for Scale Variables
- Explain the Pearson correlation coefficient and its assumptions
- Interpret a Pearson correlation coefficient
- Explain the options of the Bivariate Correlations procedure
- Regression Analysis
- Explain the options of the Linear Regression procedure
- Interpret the results of the Linear Regression procedure
- Use Automatic Linear Models to perform regression
- Nonparametric Tests
- Describe the options in the Nonparametric Tests procedure dialog box and tabs
- Interpret the results of several types of
Use the Chart Builder to create an error bar ANOVA analysis.

Independent-Samples T Test

Know how to interpret the results of a ANOVA.

The difference in means.

Use the Independent-Samples T Test to test.

The Independent-Samples T Test features.

Use additional syntax-only Crosstabs crosstabulation.

Use the Chi-Square test, interpret its results, and check its assumptions.

Explain differences between populations and samples.

Explain differences between experimental and non-experimental research designs.

Explain differences between independent and dependent variables.

Understanding Data Distributions - Theory.

Use measures of central tendency and dispersion.

Use normal distributions and z-scores.

Data Distributions for Categorical Variables

Interpret the results of the Frequencies procedure.

Data Distributions for Scale Variables

Interpret the results of the Frequencies, Descriptives, and Explore procedures.

Making Inferences about Populations from Samples

Explain the nature of probability.

Explain hypothesis testing.

Explain different types of statistical errors and power.

Explain differences between statistical and practical importance.

Relationships Between Categorical Variables

Request appropriate statistics for a crosstabulation.

Interpret cell counts and percents in a crosstabulation.

Use the Chi-Square test, interpret its results, and check its assumptions.

Use the Chart Builder to visualize a crosstabulation.

Use additional syntax-only Crosstabs features.

The Independent-Samples T Test.

Use the Independent-Samples T Test to test the difference in means.

Know how to interpret the results of a Independent-Samples T Test.

Use the Chart Builder to create an error bar graph to display mean differences.

The Paired-Samples T Test.

Interpret the result of a Paired-Samples T Test.

One-Way ANOVA.

Check the assumptions for One-Way ANOVA.

Interpret the results of a One-Way ANOVA analysis.

nonparametric tests

Explain differences between populations and samples.

Explain differences between experimental and non-experimental research designs.

Explain differences between independent and dependent variables.

Understanding Data Distributions - Theory.

Use measures of central tendency and dispersion.

Use normal distributions and z-scores.

Data Distributions for Categorical Variables

Interpret the results of the Frequencies procedure.

Data Distributions for Scale Variables

Interpret the results of the Frequencies, Descriptives, and Explore procedures.

Making Inferences about Populations from Samples

Explain the nature of probability.

Explain hypothesis testing.

Explain different types of statistical errors and power.

Explain differences between statistical and practical importance.

Relationships Between Categorical Variables

Request appropriate statistics for a crosstabulation.

Interpret cell counts and percents in a crosstabulation.

Use the Chi-Square test, interpret its results, and check its assumptions.

Use the Chart Builder to visualize a crosstabulation.

Use additional syntax-only Crosstabs features.
Use the Chart Builder to visualize the difference in means and check its assumptions.

Use the Independent-Samples T Test to test the difference in means.

Know how to interpret the results of a Independent-Samples T Test.

Use the Chart Builder to create an error bar graph to display mean differences.

The Paired-Samples T Test.

Interpret the results of a Paired-Samples T Test.

Check the assumptions for One-Way ANOVA.

One-Way ANOVA.

Interpret the results of a One-Way ANOVA analysis.

The Independent- Samples T Test.

Interpret the results of a One-Way ANOVA analysis.

Check the assumptions for One-Way ANOVA.

One-Way ANOVA.

Interpret the results of a One-Way ANOVA analysis.

Check the assumptions for One-Way ANOVA.

One-Way ANOVA.

Interpret the results of a One-Way ANOVA analysis.

Check the assumptions for One-Way ANOVA.

One-Way ANOVA.

Interpret the results of a One-Way ANOVA analysis.

Check the assumptions for One-Way ANOVA.

One-Way ANOVA.
- Explain differences between independent and dependent variables.
- Use additional syntax-only Crosstabs features.
- The Independent-Samples T Test.
- Use the Independent-Samples T Test to test the difference in means.
- Know how to interpret the results of a Independent-Samples T Test.
- Use the Chart Builder to create an error bar graph to display mean differences.
- The Paired-Samples T Test.
- Interpret the results of a Paired-Samples T Test.
- One-Way ANOVA.
- Check the assumptions for One-Way ANOVA.
- Interpret the results of a One-Way ANOVA analysis.
- Use the Chart Builder to create an error bar graph to display mean differences.
- Bivariate Plots and Correlations for Scale Variables.
- Explain the Pearson correlation coefficient and its assumptions.
- Interpret a Pearson correlation coefficient.
- Explain the options of the Bivariate Correlations procedure.
- Regression Analysis.
- Explain the options of the Linear Regression procedure.
- Interpret the results of the Linear Regression procedure.
- Use Automatic Linear Models to perform regression.
- Nonparametric Tests.
- Describe the options in the Nonparametric Tests procedure dialog box and tabs.
- Interpret the results of several types of nonparametric tests.
- Explain differences between populations and samples.
- Explain differences between experimental and non-experimental research designs.
- Explain differences between independent and dependent variables.
- Understanding Data Distributions - Theory.
- Use measures of central tendency and dispersion.
- Use normal distributions and z-scores.
- Data Distributions for Categorical Variables.
- Interpret the results of the Frequencies procedure.
- Data Distributions for Scale Variables.
- Interpret the results of the Frequencies, Descriptives, and Explore procedures.
- Making Inferences about Populations from Samples.
- Explain the nature of probability.
- Explain hypothesis testing.
- Explain different types of statistical errors and power.
- Explain differences between statistical and practical importance.
- Request appropriate statistics for a
- Relationships Between Categorical Variables
- Request appropriate statistics for a crosstabulation
- Interpret cell counts and percents in a crosstabulation
- Use the Chi-Square test, interpret its results, and check its assumptions
- Use the Chart Builder to visualize a crosstabulation
- Use additional syntax-only Crosstabs features
- The Independent-Samples T Test
- Use the Independent-Samples T Test to test the difference in means
- Know how to interpret the results of an Independent-Samples T Test
- Use the Chart Builder to create an error bar graph to display mean differences
- The Paired-Samples T Test
- Interpret the results of a Paired-Samples T Test
- One-Way ANOVA
- Check the assumptions for One-Way ANOVA
- Interpret the results of a One-Way ANOVA analysis
- Use the Chart Builder to create an error bar graph to display mean differences
- Bivariate Plots and Correlations for Scale Variables
- Explain the Pearson correlation coefficient and its assumptions
- Interpret a Pearson correlation coefficient
- Explain the options of the Bivariate Correlations procedure
- Regression Analysis
- Explain the options of the Linear Regression procedure
- Interpret the results of the Linear Regression procedure
- Use Automatic Linear Models to perform regression
- Nonparametric Tests
- Describe the options in the Nonparametric Tests procedure dialog box and tabs
- Interpret the results of several types of nonparametric tests
- Explain differences between populations and samples
- Explain differences between experimental and non-experimental research designs
- Explain differences between independent and dependent variables
- Understanding Data Distributions - Theory
- Use measures of central tendency and dispersion
- Use normal distributions and z-scores
- Data Distributions for Categorical Variables
- Interpret the results of the Frequencies procedure
- Data Distributions for Scale Variables
- Interpret the results of the Frequencies, Descriptives, and Explore procedures
■ Visualize the relationship between two scale variables with scatterplots, using the Chart Builder procedure.
■ Explain linear regression and its assumptions.
■ Describe when non-parametric tests should and can be used.

■ Explain differences between populations and samples.
■ Explain differences between experimental and non-experimental research designs.
■ Explain differences between independent and dependent variables.
■ Understanding Data Distributions - Theory.
■ Use measures of central tendency and dispersion.
■ Use normal distributions and z-scores.
■ Data Distributions for Categorical Variables.
■ Interpret the results of the Frequencies procedure.
■ Data Distributions for Scale Variables.
■ Interpret the results of the Frequencies, Descriptives, and Explore procedures.
■ Making Inferences about Populations from Samples.
■ Explain the nature of probability.
■ Explain hypothesis testing.
■ Explain different types of statistical errors and power.
■ Explain differences between statistical and practical importance.
■ Relationships Between Categorical Variables.
■ Request appropriate statistics for a crosstabulation.
■ Interpret cell counts and percents in a crosstabulation.
■ Use the Chi-Square test, interpret its results, and check its assumptions.
■ Use the Chart Builder to visualize a crosstabulation.
■ Use additional syntax-only Crosstabs features.
■ The Independent- Samples T Test.
■ Use the Independent-Samples T Test to test the difference in means.
■ Know how to interpret the results of a Independent-Samples T Test.
■ Use the Chart Builder to create an error bar graph to display mean differences.
■ The Paired-Samples T Test.
■ Interpret the results of a Paired-Samples T Test.
■ One-Way ANOVA.
■ Check the assumptions for One-Way ANOVA.
■ Interpret the results of a One-Way ANOVA analysis.
■ Use the Chart Builder to create an error bar graph to display mean differences.
■ Bivariate Plots and Correlations for Scale Variables.
■ Explain the Pearson correlation coefficient and its assumptions.
■ Interpret a Pearson correlation coefficient.
■ Explain the options of the Bivariate Correlations procedure.
■ Regression Analysis.
■ Explain the options of the Linear Regression procedure.
■ Interpret the results of the Linear Regression procedure.
■ Use Automatic Linear Models to perform regression.
■ Nonparametric Tests.
■ Describe the options in the Nonparametric Tests procedure dialog box and tabs.
■ Interpret the results of several types of nonparametric tests.

■ Explain differences between populations and samples.
■ Explain differences between experimental and non-experimental research designs.
■ Explain differences between independent.
and its assumptions
- Interpret a Pearson correlation coefficient
- Explain the options of the Bivariate Correlations procedure
- Regression Analysis
- Explain the options of the Linear Regression procedure
- Interpret the results of the Linear Regression procedure
- Use Automatic Linear Models to perform regression
- Nonparametric Tests
- Describe the options in the Nonparametric Tests procedure dialog box and tabs
- Interpret the results of several types of nonparametric tests

- Explain differences between populations and samples
- Explain differences between experimental and non-experimental research designs
- Explain differences between independent and dependent variables
- Understanding Data Distributions - Theory
- Use measures of central tendency and dispersion
- Use normal distributions and z-scores
- Data Distributions for Categorical Variables
- Interpret the results of the Frequencies procedure
- Data Distributions for Scale Variables
- Interpret the results of the Frequencies, Descriptives, and Explore procedures
- Making Inferences about Populations from Samples
- Explain the nature of probability
- Explain hypothesis testing
- Explain different types of statistical errors and power
- Explain differences between statistical and practical importance
- Relationships Between Categorical Variables
- Request appropriate statistics for a crosstabulation
- Interpret cell counts and percents in a crosstabulation
- Use the Chi-Square test, interpret its results, and check its assumptions
- Use the Chart Builder to visualize a crosstabulation
- Use additional syntax-only Crosstabs features
- The Independent-Samples T Test
- Use the Independent-Samples T Test to test the difference in means
- Know how to interpret the results of a Independent-Samples T Test
- Use the Chart Builder to create an error bar graph to display mean differences
- The Paired-Samples T Test
- Interpret the results of a Paired-Samples T Test
- One-Way ANOVA
- Check the assumptions for One-Way ANOVA
- Interpret the results of a One-Way ANOVA analysis
- Use the Chart Builder to create an error bar graph to display mean differences
- Bivariate Plots and Correlations for Scale Variables
- Explain the Pearson correlation coefficient and its assumptions
- Interpret a Pearson correlation coefficient
- Explain the options of the Bivariate Correlations procedure
- Regression Analysis
- Explain the options of the Linear Regression procedure
- Interpret the results of the Linear Regression procedure
- Use Automatic Linear Models to perform regression
- Nonparametric Tests
- Describe the options in the nonparametric tests

- Explain differences between populations and samples
- Explain differences between experimental and non-experimental research designs
- Explain differences between independent and dependent variables
- Understanding Data Distributions - Theory
- Use measures of central tendency and dispersion
- Use normal distributions and z-scores
- Data Distributions for Categorical Variables
- Interpret the results of the Frequencies procedure
- Data Distributions for Scale Variables
- Interpret the results of the Frequencies, Descriptives, and Explore procedures
- Making Inferences about Populations from Samples
- Explain the nature of probability
- Explain hypothesis testing
- Explain different types of statistical errors and power
- Explain differences between statistical and practical importance
- Relationships Between Categorical Variables
- Request appropriate statistics for a crosstabulation
- Interpret cell counts and percents in a crosstabulation
- Use the Chi-Square test, interpret its results, and check its assumptions
- Use the Chart Builder to visualize a crosstabulation
- Use additional syntax-only Crosstabs features
- The Independent-Samples T Test
- Use the Independent-Samples T Test to test the difference in means
- Know how to interpret the results of a Independent-Samples T Test
- Use the Chart Builder to create an error bar graph to display mean differences
- The Paired-Samples T Test
- Interpret the results of a Paired-Samples T Test
- One-Way ANOVA
- Check the assumptions for One-Way ANOVA
- Interpret the results of a One-Way ANOVA analysis
- Use the Chart Builder to create an error bar graph to display mean differences
- Bivariate Plots and Correlations for Scale Variables
- Explain the Pearson correlation coefficient and its assumptions
- Interpret a Pearson correlation coefficient
- Explain the options of the Bivariate Correlations procedure
- Regression Analysis
- Explain the options of the Linear Regression procedure
- Interpret the results of the Linear Regression procedure
- Use Automatic Linear Models to perform regression
- Nonparametric Tests
- Describe the options in the nonparametric tests

- Explain differences between populations and samples
- Explain differences between experimental and non-experimental research designs
- Explain differences between independent and dependent variables
- Understanding Data Distributions - Theory
- Use measures of central tendency and dispersion
- Use normal distributions and z-scores
- Data Distributions for Categorical Variables
- Interpret the results of the Frequencies procedure
- Data Distributions for Scale Variables
- Interpret the results of the Frequencies, Descriptives, and Explore procedures
- Making Inferences about Populations from Samples
- Explain the nature of probability
- Explain hypothesis testing
- Explain different types of statistical errors and power
- Explain differences between statistical and practical importance
- Relationships Between Categorical Variables
- Request appropriate statistics for a crosstabulation
- Interpret cell counts and percents in a crosstabulation
- Use the Chi-Square test, interpret its results, and check its assumptions
- Use the Chart Builder to visualize a crosstabulation
- Use additional syntax-only Crosstabs features
- The Independent-Samples T Test
- Use the Independent-Samples T Test to test the difference in means
- Know how to interpret the results of a Independent-Samples T Test
- Use the Chart Builder to create an error bar graph to display mean differences
- The Paired-Samples T Test
- Interpret the results of a Paired-Samples T Test
- One-Way ANOVA
- Check the assumptions for One-Way ANOVA
- Interpret the results of a One-Way ANOVA analysis
- Use the Chart Builder to create an error bar graph to display mean differences
- Bivariate Plots and Correlations for Scale Variables
- Explain the Pearson correlation coefficient and its assumptions
- Interpret a Pearson correlation coefficient
- Explain the options of the Bivariate Correlations procedure
- Regression Analysis
- Explain the options of the Linear Regression procedure
- Interpret the results of the Linear Regression procedure
- Use Automatic Linear Models to perform regression
- Nonparametric Tests
- Describe the options in the nonparametric tests

- Explain differences between populations and samples
- Explain differences between experimental and non-experimental research designs
- Explain differences between independent and dependent variables
- Understanding Data Distributions - Theory
- Use measures of central tendency and dispersion
- Use normal distributions and z-scores
- Data Distributions for Categorical Variables
- Interpret the results of the Frequencies procedure
- Data Distributions for Scale Variables
- Interpret the results of the Frequencies, Descriptives, and Explore procedures
- Making Inferences about Populations from Samples
- Explain the nature of probability
- Explain hypothesis testing
- Explain different types of statistical errors and power
- Explain differences between statistical and practical importance
- Relationships Between Categorical Variables
- Request appropriate statistics for a crosstabulation
- Interpret cell counts and percents in a crosstabulation
- Use the Chi-Square test, interpret its results, and check its assumptions
- Use the Chart Builder to visualize a crosstabulation
- Use additional syntax-only Crosstabs features
- The Independent-Samples T Test
- Use the Independent-Samples T Test to test the difference in means
- Know how to interpret the results of a Independent-Samples T Test
- Use the Chart Builder to create an error bar graph to display mean differences
- The Paired-Samples T Test
- Interpret the results of a Paired-Samples T Test
- One-Way ANOVA
- Check the assumptions for One-Way ANOVA
- Interpret the results of a One-Way ANOVA analysis
- Use the Chart Builder to create an error bar graph to display mean differences
- Bivariate Plots and Correlations for Scale Variables
- Explain the Pearson correlation coefficient and its assumptions
- Interpret a Pearson correlation coefficient
- Explain the options of the Bivariate Correlations procedure
- Regression Analysis
- Explain the options of the Linear Regression procedure
- Interpret the results of the Linear Regression procedure
- Use Automatic Linear Models to perform regression
- Nonparametric Tests
- Describe the options in the nonparametric tests
Check the assumptions for One-Way ANOVA
Interpret the results of a One-Way ANOVA analysis
Use the Chart Builder to create an error bar graph to graph mean differences
Bivariate Plots and Correlations for Scale Variables
Explain the Pearson correlation coefficient and its assumptions
Interpret a Pearson correlation coefficient
Explain the options of the Bivariate Correlations procedure
Regression Analysis
Explain the options of the Linear Regression procedure
Interpret the results of the Linear Regression procedure
Use Automatic Linear Models to perform regression
Nonparametric Tests
Describe the options in the Nonparametric Tests procedure dialog box and tabs
Interpret the results of several types of nonparametric tests

Explain the basic steps of the research process
Describe the levels of measurement used in IBM SPSS Statistics
Use the options in the Frequencies procedure
Use the options in the Frequencies, Descriptives, and Explore procedures
Explain the influence of sample size
Use the options in the Crosstabs procedure
Check the assumptions of the Independent-Samples T Test
Use the Paired-Samples T Test procedure
Use the options in the One-Way ANOVA procedure
Visually assess the relationship between two scale variables with scatterplots, using the Chart Builder procedure
Explain linear regression and its assumptions
Describe when non-parametric tests should and can be used

Explain differences between populations and samples
Explain differences between experimental and non-experimental research designs
Explain differences between independent and dependent variables
Understanding Data Distributions - Theory
Use measures of central tendency and dispersion
Use normal distributions and z-scores
Data Distributions for Categorical Variables
Interpret the results of the Frequencies procedure

Nonparametric Tests procedure dialog box and tabs
Interpret the results of several types of nonparametric tests

Explain the basic steps of the research process
Describe the levels of measurement used in IBM SPSS Statistics
Use the options in the Frequencies procedure
Use the options in the Frequencies, Descriptives, and Explore procedures
Explain the influence of sample size
Use the options in the Crosstabs procedure
Check the assumptions of the Independent-Samples T Test
Use the Paired-Samples T Test procedure
Use the options in the One-Way ANOVA procedure
Visually assess the relationship between two scale variables with scatterplots, using the Chart Builder procedure
Explain linear regression and its assumptions
Describe when non-parametric tests should and can be used

Explain differences between populations and samples
Explain differences between experimental and non-experimental research designs
Explain differences between independent and dependent variables
Understanding Data Distributions - Theory
Use measures of central tendency and dispersion
Use normal distributions and z-scores
Data Distributions for Categorical Variables
Interpret the results of the Frequencies procedure

Data Distributions for Scale Variables
Interpret the results of the Frequencies, Descriptives, and Explore procedures
Making Inferences about Populations from Samples
Explain the nature of probability
Explain hypothesis testing
Explain different types of statistical errors and power
Explain differences between statistical and practical importance
Relationships Between Categorical Variables
Request appropriate statistics for a crosstabulation
Interpret cell counts and percents in a crosstabulation

Explain differences between populations and samples
Explain differences between experimental and non-experimental research designs
Explain differences between independent and dependent variables
Understanding Data Distributions - Theory
Use measures of central tendency and dispersion
Use normal distributions and z-scores
Data Distributions for Categorical Variables
Interpret the results of the Frequencies procedure

Data Distributions for Scale Variables
Interpret the results of the Frequencies, Descriptives, and Explore procedures
Making Inferences about Populations from Samples
Explain the nature of probability
Explain hypothesis testing
Explain different types of statistical errors and power
Explain differences between statistical and practical importance
Relationships Between Categorical Variables
Data Distributions for Scale Variables	Interpret the results of the Frequencies, Descriptives, and Explore procedures
Interpret the results of the Frequencies, Descriptives, and Explore procedures	Making Inferences about Populations from Samples
Explain the nature of probability	Explain hypothesis testing
Explain different types of statistical errors and power	Explain differences between statistical and practical importance
Relationships Between Categorical Variables	Request appropriate statistics for a crosstabulation
Interpret cell counts and percents in a crosstabulation	Use the Chi-Square test, interpret its results, and check its assumptions
Use the Chart Builder to visualize a crosstabulation	Use additional syntax-only Crosstabs features
The Independent- Samples T Test	The Independent- Samples T Test
Use the Independent-Samples T Test to test the difference in means	Know how to interpret the results of a One-Way ANOVA
Use the Chart Builder to create an error bar graph to display mean differences	Use the Chart Builder to create an error bar graph to display mean differences
The Paired-Samples T Test	The Paired-Samples T Test
Interpret the results of a Paired-Samples T Test	One-Way ANOVA
Check the assumptions for One-Way ANOVA	Interpret the results of a One-Way ANOVA analysis
Use Automatic Linear Models to perform regression	Nonparametric Tests
Describe the options in the Nonparametric Tests procedure dialog box and tabs	
Interpret the results of several types of nonparametric tests	Explain differences between populations and samples
Explain differences between experimental and non-experimental research designs	Explain differences between experimental and non-experimental research designs
Explain differences between independent and dependent variables	Understanding Data Distributions - Theory
Use measures of central tendency and dispersion	Use measures of central tendency and dispersion
Use normal distributions and z-scores	Data Distributions for Categorical Variables
Data Distributions for Categorical Variables	Interpret the results of the Frequencies procedure
Interpret the results of the Frequencies	Data Distributions for Scale Variables
Interpret the results of the Frequencies	Understanding Data Distributions - Theory
Descriptives, and Explore procedures	Use measures of central tendency and dispersion
Making Inferences about Populations from Samples	Use normal distributions and z-scores
Data Distributions for Scale Variables	Data Distributions for Categorical Variables
Interpret the results of the Frequencies procedure	Interpret the results of the Frequencies
Data Distributions for Scale Variables	Data Distributions for Categorical Variables
Interpret the results of the Frequencies	Interpret the results of the Frequencies
Data Distributions for Scale Variables	Data Distributions for Scale Variables
Interpret the results of the Frequencies, Descriptives, and Explore procedures	Making Inferences about Populations from Samples
■ Explain differences between independent and dependent variables
■ Understanding Data Distributions - Theory
■ Use measures of central tendency and dispersion
■ Use normal distributions and z-scores
■ Data Distributions for Categorical Variables
■ Interpret the results of the Frequencies procedure
■ Data Distributions for Scale Variables
■ Interpret the results of the Frequencies, Descriptives, and Explore procedures
■ Making Inferences about Populations from Samples
■ Explain the nature of probability
■ Explain hypothesis testing
■ Explain different types of statistical errors and power
■ Explain differences between statistical and practical importance
■ Relationships Between Categorical Variables
■ Request appropriate statistics for a crosstabulation
■ Interpret cell counts and percents in a crosstabulation
■ Use the Chi-Square test, interpret its results, and check its assumptions
■ Use the Chart Builder to visualize a crosstabulation
■ Use additional syntax-only Crosstabs features
■ The Independent- Samples T Test
■ Use the Independent-Samples T Test to test the difference in means
■ Know how to interpret the results of a Independent-Samples T Test
■ Use the Chart Builder to create an error bar graph to display mean differences
■ The Paired-Samples T Test
■ Interpret the results of a Paired-Samples T Test
■ One-Way ANOVA
■ Check the assumptions for One-Way ANOVA
■ Interpret the results of a One-Way ANOVA analysis
■ Use the Chart Builder to create an error bar to graph mean differences
■ Bivariate Plots and Correlations for Scale Variables
■ Explain the Pearson correlation coefficient and its assumptions
■ Interpret a Pearson correlation coefficient
■ Explain the options of the Bivariate Correlations procedure
■ Regression Analysis
■ Interpret the results of the Linear Regression procedure
■ Use Automatic Linear Models to perform regression
■ Nonparametric Tests
■ Describe the options in the Nonparametric Tests procedure dialog box and tabs
■ Interpret the results of several types of nonparametric tests
■ Explain differences between populations and samples
■ Explain differences between experimental and non-experimental research designs
■ Explain differences between independent and dependent variables
■ Understanding Data Distributions - Theory
■ Making Inferences about Populations from Samples
■ Explain the nature of probability
■ Explain hypothesis testing
■ Explain different types of statistical errors and power
■ Explain differences between statistical and practical importance
■ Relationships Between Categorical Variables
■ Request appropriate statistics for a crosstabulation
■ Interpret cell counts and percents in a crosstabulation
■ Use the Chi-Square test, interpret its results, and check its assumptions
■ Use the Chart Builder to visualize a crosstabulation
■ Use additional syntax-only Crosstabs features
■ The Independent- Samples T Test
■ Use the Independent-Samples T Test to test the difference in means
■ Know how to interpret the results of a Independent-Samples T Test
■ Use the Chart Builder to create an error bar graph to display mean differences
■ The Paired-Samples T Test
■ Interpret the results of a Paired-Samples T Test
■ One-Way ANOVA
■ Check the assumptions for One-Way ANOVA
■ Interpret the results of a One-Way ANOVA analysis
■ Use the Chart Builder to create an error bar to graph mean differences
■ Bivariate Plots and Correlations for Scale Variables
■ Explain the Pearson correlation coefficient and its assumptions
■ Interpret a Pearson correlation coefficient
■ Explain the options of the Bivariate Correlations procedure
■ Regression Analysis
■ Interpret the results of the Linear Regression procedure
■ Use Automatic Linear Models to perform regression
■ Nonparametric Tests
■ Describe the options in the Nonparametric Tests procedure dialog box and tabs
■ Interpret the results of several types of nonparametric tests
■ Explain differences between populations and samples
■ Explain differences between experimental and non-experimental research designs
■ Explain differences between independent and dependent variables
- Interpret the results of several types of nonparametric tests
- Explain the basic steps of the research process
- Describe the levels of measurement used in IBM SPSS Statistics
- Use the options in the Frequencies procedure
- Use the options in the Frequencies, Descriptives, and Explore procedures
- Explain the influence of sample size
- Use the options in the Crosstabs procedure
- Check the assumptions of the Independent-Samples T Test
- Use the Paired-Samples T Test procedure
- Use the options in the One-Way ANOVA procedure
- Visually assess the relationship between two scale variables with scatterplots, using the Chart Builder procedure
- Explain linear regression and its assumptions
- Describe when non-parametric tests should and can be used

- Explain differences between populations and samples
- Explain differences between experimental and non-experimental research designs
- Explain differences between independent and dependent variables
- Understanding Data Distributions - Theory
- Use measures of central tendency and dispersion
- Use normal distributions and z-scores
- Data Distributions for Categorical Variables
- Interpret the results of the Frequencies procedure
- Data Distributions for Scale Variables
- Interpret the results of the Frequencies, Descriptives, and Explore procedures
- Making Inferences about Populations from Samples
- Explain the nature of probability
- Explain hypothesis testing
- Explain different types of statistical errors and power
- Explain differences between statistical and practical importance
- Relationships Between Categorical Variables
- Request appropriate statistics for a crosstabulation
- Interpret cell counts and percents in a crosstabulation
- Use the Chi-Square test, interpret its results, and check its assumptions
- Use the Chart Builder to visualize a crosstabulation
- Use additional syntax-only Crosstabs features
- The Independent-Samples T Test
- Use the Independent-Samples T Test to test the difference in means
- Know how to interpret the results of a Independent-Samples T Test
- Use the Chart Builder to create an error bar graph to display mean differences
- The Paired-Samples T Test
- Interpret the results of a Paired-Samples T Test
- One-Way ANOVA
- Check the assumptions for One-Way ANOVA
- Interpret the results of a One-Way ANOVA analysis
- Use the Chart Builder to create an error bar graph to display mean differences
- Bivariate Plots and Correlations for Scale Variables
- Explain the Pearson correlation coefficient and its assumptions
- Interpret a Pearson correlation coefficient
- Explain the options of the Bivariate Correlations procedure
- Regression Analysis
- Explain the options of the Linear Regression procedure
- Interpret the results of the Linear Regression procedure
- Use Automatic Linear Models to perform regression
- Nonparametric Tests
- Describe the options in the Nonparametric Tests procedure dialog box and tabs
- Interpret the results of several types of Nonparametric Tests
- Understanding Data Distributions - Theory
- Use measures of central tendency and dispersion
- Use normal distributions and z-scores
- Data Distributions for Categorical Variables
- Interpret the results of the Frequencies procedure
- Data Distributions for Scale Variables
- Interpret the results of the Frequencies, Descriptives, and Explore procedures
- Making Inferences about Populations from Samples
- Explain the nature of probability
- Explain hypothesis testing
- Explain different types of statistical errors and power
- Explain differences between statistical and practical importance
- Relationships Between Categorical Variables
- Request appropriate statistics for a crosstabulation
- Interpret cell counts and percents in a crosstabulation
- Use the Chi-Square test, interpret its results, and check its assumptions
- Use the Chart Builder to visualize a crosstabulation
- Use additional syntax-only Crosstabs features
- The Independent-Samples T Test
- Use the Independent-Samples T Test to test the difference in means
- Know how to interpret the results of a Independent-Samples T Test
- Use the Chart Builder to create an error bar graph to display mean differences
- The Paired-Samples T Test
- Interpret the results of a Paired-Samples T Test
- One-Way ANOVA
- Check the assumptions for One-Way ANOVA
- Interpret the results of a One-Way ANOVA analysis
- Use the Chart Builder to create an error bar graph to display mean differences
- Bivariate Plots and Correlations for Scale Variables
- Explain the Pearson correlation coefficient and its assumptions
- Interpret a Pearson correlation coefficient
- Explain the options of the Bivariate Correlations procedure
- Regression Analysis
- Explain the options of the Linear Regression procedure
- Interpret the results of the Linear Regression procedure
- Use Automatic Linear Models to perform regression
- Nonparametric Tests
- Describe the options in the Nonparametric Tests procedure dialog box and tabs
- Interpret the results of several types of Nonparametric Tests
The Independent- Samples T Test
Use the Independent-Samples T Test to test the difference in means
Know how to interpret the results of a Independent-Samples T Test
Use the Chart Builder to create an error bar graph to display mean differences
The Paired-Samples T Test
Interpret the results of a Paired-Samples T Test
One-Way ANOVA
Check the assumptions for One-Way ANOVA
Interpret the results of a One-Way ANOVA analysis
Use the Chart Builder to create an error bar graph to display mean differences
Bivariate Plots and Correlations for Scale Variables
Explain the Pearson correlation coefficient and its assumptions
Interpret a Pearson correlation coefficient
Explain the options of the Bivariate Correlations procedure
Regression Analysis
Interpret the results of the Linear Regression procedure
Interpret the results of the Linear Regression procedure
Use Automatic Linear Models to perform regression
Nonparametric Tests
Describe the options in the Nonparametric Tests procedure dialog box and tabs
Interpret the results of several types of nonparametric tests

Use additional syntax-only Crosstabs features
The Independent- Samples T Test
Use the Independent-Samples T Test to test the difference in means
Know how to interpret the results of a Independent-Samples T Test
Use the Chart Builder to create an error bar graph to display mean differences
The Paired-Samples T Test
Interpret the results of a Paired-Samples T Test
One-Way ANOVA
Check the assumptions for One-Way ANOVA
Interpret the results of a One-Way ANOVA analysis
Use the Chart Builder to create an error bar graph to display mean differences
Bivariate Plots and Correlations for Scale Variables
Explain the Pearson correlation coefficient and its assumptions
Interpret a Pearson correlation coefficient
Explain the options of the Bivariate Correlations procedure
Regression Analysis
Interpret the results of the Linear Regression procedure
Nonparametric Tests
Describe when non-parametric tests should and can be used

The Independent- Samples T Test
Use the Independent-Samples T Test to test the difference in means
Know how to interpret the results of a Independent-Samples T Test
Use the Chart Builder to create an error bar graph to display mean differences
The Paired-Samples T Test
Interpret the results of a Paired-Samples T Test
One-Way ANOVA
Check the assumptions for One-Way ANOVA
Interpret the results of a One-Way ANOVA analysis
Use the Chart Builder to create an error bar graph to display mean differences
Bivariate Plots and Correlations for Scale Variables
Explain the Pearson correlation coefficient and its assumptions
Interpret a Pearson correlation coefficient
Explain the options of the Bivariate Correlations procedure
Regression Analysis
Interpret the results of the Linear Regression procedure
Nonparametric Tests
Describe when non-parametric tests should and can be used
crosstabulation
- Interpret cell counts and percents in a crosstabulation
- Use the Chi-Square test, interpret its results, and check its assumptions
- Use the Chart Builder to visualize a crosstabulation
- Use additional syntax-only Crosstabs features
- The Independent-Samples T Test
- Use the Independent-Samples T Test to test the difference in means
- Know how to interpret the results of a Independent-Samples T Test
- Use the Chart Builder to create an error bar graph to display mean differences
- The Paired-Samples T Test
- Interpret the results of a Paired-Samples T Test
- One-Way ANOVA
- Check the assumptions for One-Way ANOVA
- Interpret the results of a One-Way ANOVA analysis
- Use the Chart Builder to create an error bar graph to mean differences
- Bivariate Plots and Correlations for Scale Variables
- Explain the Pearson correlation coefficient and its assumptions
- Interpret a Pearson correlation coefficient
- Explain the options of the Bivariate Correlations procedure
- Regression Analysis
- Explain the options of the Linear Regression procedure
- Interpret the results of the Linear Regression procedure
- Use Automatic Linear Models to perform regression
- Nonparametric Tests
- Describe the options in the Nonparametric Tests procedure dialog box and tabs
- Interpret the results of several types of nonparametric tests
- Regression Analysis
- Explain the options of the Linear Regression procedure
- Interpret the results of the Linear Regression procedure
- Use Automatic Linear Models to perform regression
- Nonparametric Tests
- Describe the options in the Nonparametric Tests procedure dialog box and tabs
- Interpret the results of several types of nonparametric tests
- Explain the basic steps of the research process
- Describe the levels of measurement used in IBM SPSS Statistics
- Use the options in the Frequencies procedure
- Use the options in the Frequencies, Descriptives, and Explore procedures
- Explain the influence of sample size
- Use the options in the Crosstabs procedure
- Check the assumptions of the Independent-Samples T Test
- Use the Paired-Samples T Test procedure
- Use the options in the One-Way ANOVA procedure
- Visually assess the relationship between two scale variables with scatterplots, using the Chart Builder procedure
- Explain linear regression and its assumptions
- Describe when non-parametric tests should and can be used
- Explain differences between populations and samples
- Explain differences between experimental and non-experimental research designs
- Explain differences between independent and dependent variables
- Understanding Data Distributions - Theory
- Use measures of central tendency and dispersion
- Use normal distributions and z-scores
- Data Distributions for Categorical Variables
- Interpret the results of the Frequencies procedure
- Data Distributions for Scale Variables
- Interpret the results of the Frequencies, Descriptives, and Explore procedures
- Making Inferences about Populations from Samples
- Explain the nature of probability
- Explain hypothesis testing
- Explain different types of statistical errors and power
- Explain differences between statistical and practical importance
- Relationships Between Categorical
- The Independent-Samples T Test
- Use the Independent-Samples T Test to test the difference in means
- Know how to interpret the results of a Independent-Samples T Test
- Use the Chart Builder to create an error bar graph to display mean differences
- The Paired-Samples T Test
- Interpret the results of a Paired-Samples T Test
- One-Way ANOVA
- Check the assumptions for One-Way ANOVA
- Interpret the results of a One-Way ANOVA analysis
- Use the Chart Builder to create an error bar graph to mean differences
- Bivariate Plots and Correlations for Scale Variables
- Explain the Pearson correlation coefficient and its assumptions
- Interpret a Pearson correlation coefficient
- Explain the options of the Bivariate Correlations procedure
- Regression Analysis
- Explain the options of the Linear Regression procedure
- Interpret the results of the Linear Regression procedure
- Use Automatic Linear Models to perform regression
- Nonparametric Tests
- Describe the options in the Nonparametric Tests procedure dialog box and tabs
- Interpret the results of several types of nonparametric tests
- Explain differences between populations and samples
- Explain differences between experimental and non-experimental research designs
- Explain differences between independent and dependent variables
- Understanding Data Distributions - Theory
- Use measures of central tendency and dispersion
- Use normal distributions and z-scores
- Data Distributions for Categorical Variables
- Interpret the results of the Frequencies procedure
- Data Distributions for Scale Variables
- Interpret the results of the Frequencies, Descriptives, and Explore procedures
- Making Inferences about Populations from Samples
- Explain the nature of probability
- Explain hypothesis testing
- Explain different types of statistical errors and power
- Explain differences between statistical and practical importance
- Relationships Between Categorical
and power
- Explain differences between statistical and practical importance
- Relationships Between Categorical Variables
- Request appropriate statistics for a crosstabulation
- Interpret cell counts and percents in a crosstabulation
- Use the Chi-Square test, interpret its results, and check its assumptions
- Use the Chart Builder to visualize a crosstabulation
- Use additional syntax-only Crosstabs features
- The Independent-Samples T Test
- Use the Independent-Samples T Test to test the difference in means
- Know how to interpret the results of a Independent-Samples T Test
- Use the Chart Builder to create an error bar graph to display mean differences
- The Paired-Samples T Test
- Interpret the results of a Paired-Samples T Test
- One-Way ANOVA
- Check the assumptions for One-Way ANOVA
- Interpret the results of a One-Way ANOVA analysis
- Use the Chart Builder to create an error bar to graph mean differences
- Bivariate Plots and Correlations for Scale Variables
- Explain the Pearson correlation coefficient and its assumptions
- Interpret a Pearson correlation coefficient
- Explain the options of the Bivariate Correlations procedure
- Regression Analysis
- Explain the options of the Linear Regression procedure
- Interpret the results of the Linear Regression procedure
- Use Automatic Linear Models to perform regression
- Nonparametric Tests
- Describe the options in the Nonparametric Tests procedure dialog box and tabs
- Interpret the results of several types of nonparametric tests

- Explain differences between populations and samples
- Explain differences between experimental and non-experimental research designs
- Explain differences between independent and dependent variables
- Understanding Data Distributions - Theory
- Use measures of central tendency and dispersion
- Use normal distributions and z-scores

- Request appropriate statistics for a crosstabulation
- Interpret cell counts and percents in a crosstabulation
- Use the Chi-Square test, interpret its results, and check its assumptions
- Use the Chart Builder to visualize a crosstabulation
- Use additional syntax-only Crosstabs features
- The Independent-Samples T Test
- Use the Independent-Samples T Test to test the difference in means
- Know how to interpret the results of a Independent-Samples T Test
- Use the Chart Builder to create an error bar graph to display mean differences
- The Paired-Samples T Test
- Interpret the results of a Paired-Samples T Test
- One-Way ANOVA
- Check the assumptions for One-Way ANOVA
- Interpret the results of a One-Way ANOVA analysis
- Use the Chart Builder to create an error bar to graph mean differences
- Bivariate Plots and Correlations for Scale Variables
- Explain the Pearson correlation coefficient and its assumptions
- Interpret a Pearson correlation coefficient
- Explain the options of the Bivariate Correlations procedure
- Regression Analysis
- Explain the options of the Linear Regression procedure
- Interpret the results of the Linear Regression procedure
- Use Automatic Linear Models to perform regression
- Nonparametric Tests
- Describe the options in the Nonparametric Tests procedure dialog box and tabs
- Interpret the results of several types of nonparametric tests
- Data Distributions for Categorical Variables
- Interpret the results of the Frequencies procedure
- Data Distributions for Scale Variables
- Interpret the results of the Frequencies, Descriptives, and Explore procedures
- Making Inferences about Populations from Samples
- Explain the nature of probability
- Explain hypothesis testing
- Explain different types of statistical errors and power
- Explain differences between statistical and practical importance
- Relationships Between Categorical Variables
- Request appropriate statistics for a crosstabulation
- Interpret cell counts and percents in a crosstabulation
- Use the Chi-Square test, interpret its results, and check its assumptions
- Use the Chart Builder to visualize a crosstabulation
- Use additional syntax-only Crosstabs features
- The Independent-Samples T Test
- Use the Independent-Samples T Test to test the difference in means
- Know how to interpret the results of a Independent-Samples T Test
- Use the Chart Builder to create an error bar graph to display mean differences
- The Paired-Samples T Test
- Interpret the results of a Paired-Samples T Test
- One-Way ANOVA
- Check the assumptions for One-Way ANOVA
- Interpret the results of a One-Way ANOVA analysis
- Use the Chart Builder to create an error bar to graph mean differences
- Bivariate Plots and Correlations for Scale Variables
- Explain the Pearson correlation coefficient and its assumptions
- Interpret a Pearson correlation coefficient
- Explain the options of the Bivariate Correlations procedure
- Regression Analysis
- Explain the options of the Linear Regression procedure
- Interpret the results of the Linear Regression procedure
- Use Automatic Linear Models to perform regression
- Nonparametric Tests
- Describe the options in the Nonparametric Tests procedure dialog box and tabs
- Interpret the results of several types of nonparametric tests
Más información:
Para más información o para reservar tu plaza llámanos al (34) 91 425 06 60
info.cursos@globalknowledge.es
www.globalknowledge.es
Global Knowledge Network Spain, C/ Retama 7, 6ª planta, 28045 Madrid